\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Monotonicity of entropy for unimodal real quadratic rational maps

  • *Corresponding author: Yan Gao

    *Corresponding author: Yan Gao

The author is supported by NSFC grants 11871354 and 12131016.

Abstract / Introduction Full Text(HTML) Figure(2) Related Papers Cited by
  • We show that the topological entropy is monotonic for unimodal interval maps which are obtained from the restriction of quadratic rational maps with real coefficients and real critical points. This confirms a conjecture made in [8].

    Mathematics Subject Classification: Primary: 37B40, 37F10, 37F20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  An entropy contour plot for the unimodal quadratic rational maps 8 adapted from [8]. The ordering of colors is black$ < $blue$ < $magenta$ < $green$ < $cyan$ < $yellow$ < $red and they correspond to the partition $ [0, 0.1) $, $ [0.1, 0.25) $, $ [0.25, 0.4) $, $ [0.4, 0.48) $, $ [0.48, 0.55) $, $ [0.55, 0.65) $ and $ [0.65, \log(2)] $ of $ [0, \log(2)\approx 0.7] $. The connectedness of entropy level sets here suggests the monotonicity of entropy in the unimodal region of $ {\rm rat}_2({\mathbb R}) $

    Figure 2.  A schematic picture of bones (in black) defined by the post-critical relations $ f^{ n}(c_1) = c_1 $ in the unimodal region of the $ (\sigma_1, \sigma_2) $-plane. They are disjoint one-dimensional submanifolds. There are bone-arcs connecting PCF quadratic polynomials to PCF quadratic rational maps on the $ f(c_1) = c_2 $ line. Any other bone in this region should be a Jordan curve, a bone-loop. The picture is adapted from [8]

  • [1] L. Bers and H. L. Royden, Holomorphic families of injections, Acta Math., 157 (1986), 259-286.  doi: 10.1007/BF02392595.
    [2] A. BonifantJ. Milnor and S. Sutherland, The W. Thurston algorithm applied to real polynomial maps, Conform. Geom. Dyn., 25 (2021), 179-199.  doi: 10.1090/ecgd/365.
    [3] H. Bruin and S. van Strien, Monotonicity of entropy for real multimodal maps, J. Amer. Math. Soc., 28 (2015), 1-61.  doi: 10.1090/S0894-0347-2014-00795-5.
    [4] S. P. Dawson, R. Galeeva, J. Milnor and C. Tresser, A monotonicity conjecture for real cubic maps, In Real and Complex Dynamical Systems, 1993 (Hillerød), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 464, Kluwer Acad. Publ., Dordrecht, 1995,165–183.
    [5] W. de Melo and S. van Strien, One-Dimensional Dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 25, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-642-78043-1.
    [6] A. Douady, Topological entropy of unimodal maps: Monotonicity for quadratic polynomials, In Real and Complex Dynamical Systems, 1993 (Hillerød), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 464, Kluwer Acad. Publ., Dordrecht, 1995, 65–87.
    [7] A. Douady and J. H. Hubbard, Étude Dynamique des Polynômes Complexes, Partie I, Publications Mathématiques d'Orsay, 84, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984.
    [8] K. Filom, Monotonicity of entropy for real quadratic rational maps, Nonlinearity, 34 (2021), 6587-6626.  doi: 10.1088/1361-6544/ac15aa.
    [9] K. Filom, Real entropy rigidity under quasi-conformal deformations, Conform. Geom. Dyn., 25 (2021), 1-33.  doi: 10.1090/ecgd/356.
    [10] K. Filom and K. M. Pilgrim, On the non-monotonicity of entropy for a class of real quadratic rational maps, Journal of Modern Dynamics, 16 (2020), 225-254.  doi: 10.3934/jmd.2020008.
    [11] O. Kozlovski, On the structure of isentropes of real polynomials, J. Lond. Math. Soc., 100 (2019), 159-182.  doi: 10.1112/jlms.12207.
    [12] G. Levin, W. Shen and S. van Strien, Transversality for critical relations of families of rational maps: An elementary proof, In New Trends in One-Dimensional Dynamics, Springer Proc. Math. Stat., 285, Springer, Cham., 2019,201–220. doi: 10.1007/978-3-030-16833-9_11.
    [13] G. LevinW. Shen and S. van Strien, Positive transversality via transfer operators and holomorphic motions with applications to monotonicity for interval maps, Nonlinearity, 33 (2020), 3970-4012.  doi: 10.1088/1361-6544/ab853e.
    [14] J. Milnor, Geometry and dynamics of quadratic rational maps, Experiment. Math., 2 (1993), 37-83.  doi: 10.1080/10586458.1993.10504267.
    [15] J. Milnor and W. Thurston, On iterated maps of the interval, In Dynamical Systems, 1986–87 (College Park, MD), Lecture Notes in Math., 1342, Springer, Berlin, 1988,465–563. doi: 10.1007/BFb0082847.
    [16] J. Milnor and C. Tresser, On entropy and monotonicity for real cubic maps, Comm. Math. Phys., 209 (2000), 123-178.  doi: 10.1007/s002200050018.
    [17] S. van Strien, Milnor's conjecture on monotonicity of topological entropy: Results and questions, Frontiers in Complex Dynamics, Princeton Math. Ser., 51, Princeton Univ. Press, Princeton, NJ, 2014,323-337.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(2615) PDF downloads(142) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return