We study positive functions satisfying (E)$ \;-\Delta u+m|\nabla u|^q-u^p = 0 $ in a domain $ {\Omega} $ or in $ {\mathbb R}^{_N}_+ $ when $ p>1 $ and $ 1<q<2 $. We give sufficient conditions for the existence of a solution to (E) with a nonnegative measure $ \mu $ as boundary data; these conditions are expressed in terms of Bessel capacities on the boundary. We also study removability of boundary singular sets, and solutions with an isolated singularity on $ \partial\Omega $. The different results depend on two critical exponents for $ p = p_c: = \frac{N+1}{N-1} $ and for $ q = q_c: = \frac{N+1}{N} $, and on the sign of $ q-\frac{2p}{p+1} $
Citation: |
[1] |
D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Theory, Springer-Verlag, London-Berlin-Heidelberg-New York (1996).
doi: 10.1007/978-3-662-03282-4.![]() ![]() ![]() |
[2] |
S. Alarcón, J. García-Melián and A. Quaas, Nonexistence of positive supersolutions to some nonlinear elliptic problems, J. Math. Pures Appl., 99 (2013), 618-634.
doi: 10.1016/j.matpur.2012.10.001.![]() ![]() ![]() |
[3] |
M.-F. Bidaut-Véron, M. Garcia-Huidobro and L. Véron, A priori estimates for elliptic equations with reaction terms involving the function and its gradient, Math. Annalen, 378 (2020), 13-58.
doi: 10.1007/s00208-019-01872-x.![]() ![]() ![]() |
[4] |
M.-F. Bidaut-Véron, M. Garcia-Huidobro and L. Véron, Measure data problems for a class of elliptic equations with mixed absorption-reaction, Adv. Nonlinear. Stud., 21 (2020), 261-280.
doi: 10.1515/ans-2021-2124.![]() ![]() ![]() |
[5] |
M.-F. Bidaut-Véron, M. Garcia-Huidobro and L. Véron, Boundary singular solutions of a class of equations with mixed absorption-reaction, Calc. Var. part. Diff. Equ., 61 (2022), Paper No. 113, 46 pp.
doi: 10.1007/s00526-022-02200-z.![]() ![]() ![]() |
[6] |
M.-F. Bidaut-Véron, M. Garcia-Huidobro and L. Véron, New results on the Chipot-Weissler quasilinear equation, In preparation.
![]() |
[7] |
M.-F. Bidaut-Véron, G. Hoang, Q.-H. Nguyen and L. Véron, An elliptic semilinear equation with source term and boundary measure data: The supercritical case, J. Funct. Anal., 269 (2015), 1995-2017.
doi: 10.1016/j.jfa.2015.06.020.![]() ![]() ![]() |
[8] |
M.-F. Bidaut-Véron, A. C. Ponce and L. Véron, Isolated boundary singularities of semilinear elliptic equations, Calc. Var. Part. Diff. Equ., 40 (2011), 183-221.
doi: 10.1007/s00526-010-0337-z.![]() ![]() ![]() |
[9] |
M.-F. Bidaut-Véron and L. Vivier, An elliptic semilinear equation with source term involving boundary measures: The subcritical case, Rev. Mat. Iberoamericana, 16 (2000), 477-513.
doi: 10.4171/RMI/281.![]() ![]() ![]() |
[10] |
L. Boccardo, F. Murat and J. P. Puel, Résultats d'existence pour certains problèmes elliptiques quasilinéaires, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 11 (1984), 213-235.
![]() ![]() |
[11] |
M. Chipot and F. B. Weissler, Some blowup results for a nonlinear parabolic equation with a gradient term, SIAM J. Math. Anal., 20 (1989), 886-907.
doi: 10.1137/0520060.![]() ![]() ![]() |
[12] |
J. L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, Springer-Verlag, London-Berlin-Heidelberg-New York, 1984.
doi: 10.1007/978-1-4612-5208-5.![]() ![]() ![]() |
[13] |
B. Gidas and J. Spruck, Global and local behaviour of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525–598.
doi: 10.1002/cpa.3160340406.![]() ![]() ![]() |
[14] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, London-Berlin-Heidelberg-New York, 1983.
doi: 10.1007/978-3-642-61798-0.![]() ![]() ![]() |
[15] |
A. Gmira and L. Véron, Boundary singularities of solutions of some nonlinear elliptic equations, Duke Math. J., 64 (1991), 271-324.
doi: 10.1215/S0012-7094-91-06414-8.![]() ![]() ![]() |
[16] |
M. Marcus and L. Véron, The boundary trace of positive solutions of semilinear elliptic equations: The subcritical case, Arch. Rat. Mech. Anal., 144 (1998), 200-231.
doi: 10.1007/s002050050116.![]() ![]() ![]() |
[17] |
M. Marcus and L. Véron, Removable singularities and boundary traces, J. Math. Pures Appl., 80 (2001), 879-900.
doi: 10.1016/S0021-7824(01)01209-0.![]() ![]() ![]() |
[18] |
M. Marcus and L. Véron, The boundary trace and generalized boundary value problem for semilinear elliptic equations with coercive absorption, Comm. Pure Appl. Math., 56 (2003), 689-731.
doi: 10.1002/cpa.3037.![]() ![]() ![]() |
[19] |
M. Marcus and L. Véron, Nonlinear Elliptic Equations Involving Measures, De Gruyter Series in Nonlinear Analysis and Applications, 21, De Gruyter, Berlin, 2014
![]() ![]() |
[20] |
L. Montoro, Harnack inequalities and qualitative properties for some quasilinear elliptic equations, Nonlinear Diff. Equ. Appl., 26 (2019), 33 pp.
doi: 10.1007/s00030-019-0591-5.![]() ![]() ![]() |
[21] |
P. T. Nguyen and L. Véron, Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi equations, J. Funct. Anal., 263 (2012), 1487-1538.
doi: 10.1016/j.jfa.2012.05.019.![]() ![]() ![]() |
[22] |
B. Opic and A. Kufner, Hardy-Type Inequalities, Pitman Research Notes in Mathematics Series, 219, Longman Scientific Technical, Harlow, 1990.
![]() ![]() |
[23] |
P. Polacik, P. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8.![]() ![]() ![]() |
[24] |
D. Ruiz, A priori estimates and existence of positive solutions for strongly nonlinear problems, J. Diff. Equ., 199 (2004), 96–114.
doi: 10.1016/j.jde.2003.10.021.![]() ![]() ![]() |
[25] |
J. Serrin, Y. Yan and H. Zou, A numerical study of existence and non-existence of the ground states and bifurcation for the equation of Chipot and Weissler, AHPCRC Preprint, 93-056, Univesrity of Minnesota, (1993).
![]() |
[26] |
J. Serrin and H. Zou, Existence and non-existence results for ground states of quasilinear elliptic equations, Arch. Rational Mech. Anal., 121 (1992), 101-130.
doi: 10.1007/BF00375415.![]() ![]() ![]() |
[27] |
J. Serrin and H. Zou, Classification of positive solutions of quasilinear elliptic equations, Top. Meth. in Nonlinear Anal., 3 (1994), 1-25.
doi: 10.12775/TMNA.1994.001.![]() ![]() ![]() |
[28] |
L. Véron, Singular solutions of some nonlinear elliptic equations, Nonlinear Anal. Theory, Methods Appl., 5 (1981), 225-242.
doi: 10.1016/0362-546X(81)90028-6.![]() ![]() ![]() |
[29] |
L. Véron, Local and Global Aspects of Quasilinear Degenerate Elliptic Equations, World Scientific, 2017.
doi: 10.1142/9850.![]() ![]() ![]() |
[30] |
F. X. Voirol, Étude de Quelques Équations Elliptiques Fortement Non Linéaires, PhD Thesis, University of Metz, 1994.
![]() |