\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Uniform tail estimates and $ L^p( {\mathbb{R}}^N) $-convergence for finite-difference approximations of nonlinear diffusion equations

  • *Corresponding author: Espen R. Jakobsen

    *Corresponding author: Espen R. Jakobsen

Dedicated to Juan Luis Vázquez -with deep admiration- on the occasion of his 75th birthday

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We obtain new equitightness and $ C([0, T];L^p( {\mathbb{R}}^N)) $-convergence results for finite-difference approximations of generalized porous medium equations of the form

    $ \partial_tu-\mathfrak{L}[\varphi(u)] = g\qquad\text{in }~~ {\mathbb{R}}^N\times(0, T) , $

    where $ \varphi: {\mathbb{R}}\to {\mathbb{R}} $ is continuous and nondecreasing, and $ \mathfrak{L} $ is a local or nonlocal diffusion operator. Our results include slow diffusions, strongly degenerate Stefan problems, and fast diffusions above a critical exponent. These results improve the previous $ C([0, T];L_ \text{loc}^p( {\mathbb{R}}^N)) $-convergence obtained in a series of papers on the topic by the authors. To have equitightness and global $ L^p( {\mathbb{R}}^N) $-convergence, some additional restrictions on $ \mathfrak{L} $ and $ \varphi $ are needed. Most commonly used symmetric operators $ \mathfrak{L} $ are still included: the Laplacian, fractional Laplacians, and other generators of symmetric Lévy processes with some fractional moment. We also discuss extensions to nonlinear possibly strongly degenerate convection-diffusion equations.

    Mathematics Subject Classification: Primary: 35K15, 35K65, 35D30, 35R09, 35R11, 65M06, 65M12; Secondary: 76S05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] D. Applebaum, Lévy Processes and Stochastic Calculus, 2$^{nd}$ edition, Cambridge University Press, Cambridge, 2009. doi: 10.1017/CBO9780511809781.
    [2] A. Benedek and R. Panzone, The spaces $L^{P}$, with mixed norm, Duke Math. J., 28 (1961), 301-324.  doi: 10.1215/S0012-7094-61-02828-9.
    [3] P. Bénilan and M. G. Crandall, The continuous dependence on $\varphi $ of solutions of $u_{t}-\Delta \varphi (u) = 0$, Indiana Univ. Math. J., 30 (1981), 161-177.  doi: 10.1512/iumj.1981.30.30014.
    [4] J. BertoinLévy Processes, Cambridge University Press, Cambridge, 1996. 
    [5] N. Bourbaki, Elements of Mathematics. General Topology. Part 2, Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966.
    [6] C. BrändleE. Chasseigne and F. Quirós, Phase transitions with midrange interactions: A nonlocal Stefan model, SIAM J. Math. Anal., 44 (2012), 3071-3100.  doi: 10.1137/110849365.
    [7] A. Bueno-Orovio, D. Kay, V. Grau, B. Rodriguez and K. Burrage, Fractional diffusion models of cardiac electrical propagation: Role of structural heterogeneity in dispersion of repolarization, J. Royal Soc. Interface, 11 (2014).
    [8] M. C. Bustos, F. Concha, R. Bürger and E. M. Tory, Sedimentation and Thickening, Kluwer Academic Publishers, Dordrecht, 1999. doi: 10.1007/978-94-015-9327-4.
    [9] S. Cifani and E. R. Jakobsen, Entropy solution theory for fractional degenerate convection-diffusion equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 413-441.  doi: 10.1016/j.anihpc.2011.02.006.
    [10] S. Cifani and E. R. Jakobsen, On numerical methods and error estimates for degenerate fractional convection-diffusion equations, Numer. Math., 127 (2014), 447-483.  doi: 10.1007/s00211-013-0590-0.
    [11] R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC, Boca Raton, FL, 2004.
    [12] A. de PabloF. QuirósA. Rodríguez and J. L. Vázquez, A general fractional porous medium equation, Comm. Pure Appl. Math., 65 (2012), 1242-1284.  doi: 10.1002/cpa.21408.
    [13] F. del TesoJ. Endal and E. R. Jakobsen, On distributional solutions of local and nonlocal problems of porous medium type, C. R. Math. Acad. Sci. Paris, 355 (2017), 1154-1160.  doi: 10.1016/j.crma.2017.10.010.
    [14] F. del TesoJ. Endal and E. R. Jakobsen, Uniqueness and properties of distributional solutions of nonlocal equations of porous medium type, Adv. Math., 305 (2017), 78-143.  doi: 10.1016/j.aim.2016.09.021.
    [15] F. del TesoJ. Endal and E. R. Jakobsen, Robust numerical methods for nonlocal (and local) equations of porous medium type. Part II: Schemes and experiments, SIAM J. Numer. Anal., 56 (2018), 3611-3647.  doi: 10.1137/18M1180748.
    [16] F. del TesoJ. Endal and E. R. Jakobsen, Robust numerical methods for nonlocal (and local) equations of porous medium type. Part I: Theory, SIAM J. Numer. Anal., 57 (2019), 2266-2299.  doi: 10.1137/19M1237041.
    [17] F. del TesoJ. Endal and J. L. Vázquez, On the two-phase fractional Stefan problem, Adv. Nonlinear Stud., 20 (2020), 437-458.  doi: 10.1515/ans-2020-2081.
    [18] F. del TesoJ. Endal and J. L. Vázquez, The one-phase fractional Stefan problem, Math. Models Methods Appl. Sci., 31 (2021), 83-131.  doi: 10.1142/S0218202521500032.
    [19] E. DiBenedetto, Real Analysis, Birkhäuser Boston, Inc., Boston, MA, 2002. doi: 10.1007/978-1-4612-0117-5.
    [20] J. Droniou, A numerical method for fractal conservation laws, Math. Comp., 79 (2010), 95-124.  doi: 10.1090/S0025-5718-09-02293-5.
    [21] J. Droniou and R. Eymard, Uniform-in-time convergence of numerical methods for non-linear degenerate parabolic equations, Numer. Math., 132 (2016), 721-766.  doi: 10.1007/s00211-015-0733-6.
    [22] J. Droniou, R. Eymard, T. Gallouët, C. Guichard and R. Herbin, The Gradient Discretisation Method, Springer, Cham, 2018. doi: 10.1007/978-3-319-79042-8.
    [23] J. Droniou and E. R. Jakobsen, A uniformly converging scheme for fractal conservation laws, Finite Volumes for Complex Applications VII. Methods and Theoretical Aspects, Springer Proc. Math. Stat., 77, Springer, Cham, 2014,237–245. doi: 10.1007/978-3-319-05684-5_22.
    [24] O. Ersland and E. R. Jakobsen, On fractional and nonlocal parabolic mean field games in the whole space, J. Differential Equations, 301 (2021), 428-470.  doi: 10.1016/j.jde.2021.08.026.
    [25] M. S. Espedal and K. H. Karlsen, Numerical solution of reservoir flow models based on large time step operator splitting algorithms, Filtration in Porous Media and Industrial Application (Cetraro, 1998), Lecture Notes in Math., 1734, Springer, Berlin, 2000, 9–77. doi: 10.1007/BFb0103975.
    [26] L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, second edition, 2010. doi: 10.1090/gsm/019.
    [27] S. Evje and K. H. Karlsen, Monotone difference approximations of BV solutions to degenerate convection-diffusion equations, SIAM J. Numer. Anal., 37 (2000), 1838-1860.  doi: 10.1137/S0036142998336138.
    [28] D. H. Fremlin, Measure Theory. Vol. 2, Torres Fremlin, Colchester, 2001.
    [29] H. Hanche-Olsen and H. Holden, The Kolmogorov-Riesz compactness theorem, Expo. Math., 28 (2010), 385-394.  doi: 10.1016/j.exmath.2010.03.001.
    [30] H. Hanche-OlsenH. Holden and E. Malinnikova, An improvement of the Kolmogorov-Riesz compactness theorem, Expo. Math., 37 (2019), 84-91.  doi: 10.1016/j.exmath.2018.03.002.
    [31] H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, Springer-Verlag, New York, 2002. doi: 10.1007/978-3-642-56139-9.
    [32] L. I. IgnatT. I. Ignat and D. Stancu-Dumitru, A compactness tool for the analysis of nonlocal evolution equations, SIAM J. Math. Anal., 47 (2015), 1330-1354.  doi: 10.1137/130921349.
    [33] S. Kamin and J. L. Vázquez, Fundamental solutions and asymptotic behaviour for the $p$-Laplacian equation, Rev. Mat. Iberoamericana, 4 (1988), 339-354.  doi: 10.4171/RMI/77.
    [34] K. H. Karlsen and N. H. Risebro, Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients, M2AN Math. Model. Numer. Anal., 35 (2001), 239-269.  doi: 10.1051/m2an:2001114.
    [35] K. H. KarlsenN. H. Risebro and E. B. Storrøsten, $L^1$ error estimates for difference approximations of degenerate convection-diffusion equations, Math. Comp., 83 (2014), 2717-2762.  doi: 10.1090/S0025-5718-2014-02818-4.
    [36] K. H. KarlsenN. H. Risebro and E. B. Storrøsten, On the convergence rate of finite difference methods for degenerate convection-diffusion equations in several space dimensions, ESAIM Math. Model. Numer. Anal., 50 (2016), 499-539.  doi: 10.1051/m2an/2015057.
    [37] W. Schoutens, Lévy Processes in Finance: Pricing Financial Derivatives, 1$^{st}$ edition, Wiley, Chichester, 2003.
    [38] C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, The University of Illinois Press, Urbana, Ill., 1949.
    [39] J. Simon, Compact sets in the space ${L}^p(0, {T}; {B})$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.  doi: 10.1007/BF01762360.
    [40] J. L. Vázquez, The Porous Medium Equation. Mathematical Theory, The Clarendon Press, Oxford University Press, Oxford, 2007.
    [41] G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, New York-London-Sydney, 1974.
    [42] W. A. Woyczyński, Lévy processes in the physical sciences, in Lévy Processes, Birkhäuser Boston, 2001, 241–266.
  • 加载中
SHARE

Article Metrics

HTML views(1872) PDF downloads(223) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return