We establish an uncountable amenable ergodic Roth theorem, in which the acting group is not assumed to be countable and the space need not be separable. This generalizes a previous result of Bergelson, McCutcheon and Zhang, and complements a result of Zorin-Kranich. We establish the following two additional results: First, a combinatorial application about triangular patterns in certain subsets of the Cartesian square of arbitrary amenable groups, extending a result of Bergelson, McCutcheon and Zhang for countable amenable groups. Second, a new uniformity aspect in the double recurrence theorem for $ \Gamma $-systems for uniformly amenable groups $ \Gamma $. Our uncountable Roth theorem is crucial in the proof of both of these results.
Citation: |
[1] |
T. Austin, Non-conventional ergodic averages for several commuting actions of an amenable group, J. Anal. Math., 130 (2016), 243-274.
doi: 10.1007/s11854-016-0036-6.![]() ![]() ![]() |
[2] |
M. Beiglböck, V. Bergelson and A. Fish, Sumset phenomenon in countable amenable groups, Adv. Math., 223 (2010), 416-432.
doi: 10.1016/j.aim.2009.08.009.![]() ![]() ![]() |
[3] |
V. Bergelson and N. Hindman, Some topological semicommutative van der Waerden type theorems and their combinatorial consequences, J. London Math. Soc., 45 (1992), 385-403.
doi: 10.1112/jlms/s2-45.3.385.![]() ![]() ![]() |
[4] |
V. Bergelson, N. Hindman and R. McCutcheon, Notions of size and combinatorial properties of quotient sets in semigroups, In Proceedings of the 1998 Topology and Dynamics Conference (Fairfax, VA), 23 (1998), 23–60.
![]() ![]() |
[5] |
V. Bergelson, B. Host and B. Kra, Multiple recurrence and nilsequences, Invent. Math., 160 (2005), 261-303.
doi: 10.1007/s00222-004-0428-6.![]() ![]() ![]() |
[6] |
V. Bergelson, B. Host, R. McCutcheon and F. Parreau, Aspects of uniformity in recurrence, Colloq. Math., 84/85 (2000), 549-576.
doi: 10.4064/cm-84/85-2-549-576.![]() ![]() ![]() |
[7] |
V. Bergelson and A. Leibman, Failure of Roth theorem for solvable groups of exponential growth, Ergodic Theory Dynam. Systems, 24 (2004), 45-53.
doi: 10.1017/S0143385703000427.![]() ![]() ![]() |
[8] |
V. Bergelson and R. McCutcheon, Recurrence for semigroup actions and a non-commutative Schur theorem, In Topological Dynamics and Applications (Minneapolis, MN, 1995), volume 215 of Contemp. Math., pages 205–222. Amer. Math. Soc., Providence, RI, 1998.
doi: 10.1090/conm/215/02942.![]() ![]() ![]() |
[9] |
V. Bergelson, R. McCutcheon and Q. Zhang, A Roth theorem for amenable groups, Amer. J. of Math., 119 (1997), 1173-1211.
doi: 10.1353/ajm.1997.0035.![]() ![]() ![]() |
[10] |
P. Cheridito, M. Kupper and N. Vogelpoth, Conditional analysis on $\mathbb{R}^d$, Set Optimization and Applications, Proceedings in Mathematics & Statistics, 151 (2015), 179-211.
doi: 10.1007/978-3-662-48670-2_6.![]() ![]() ![]() |
[11] |
Q. Chu, Multiple recurrence for two commuting transformations, Ergodic Theory Dynam. Systems, 31 (2011), 771-792.
doi: 10.1017/S0143385710000258.![]() ![]() ![]() |
[12] |
Q. Chu and P. Zorin-Kranich, Lower bound in the Roth theorem for amenable groups, Ergodic Theory Dynam. Systems, 35 (2015), 1746-1766.
doi: 10.1017/etds.2014.13.![]() ![]() ![]() |
[13] |
C. T. Conley, A. S. Kechris and R. D. Tucker-Drob, Ultraproducts of measure preserving actions and graph combinatorics, Ergodic Theory Dynam. Systems, 33 (2013), 334-374.
doi: 10.1017/S0143385711001143.![]() ![]() ![]() |
[14] |
J.-P. Conze and E. Lesigne, Théorèmes ergodiques pour des mesures diagonales, Bull. Soc. Math. France, 112 (1984), 143-175.
![]() ![]() |
[15] |
S. Drapeau, A. Jamneshan, M. Karliczek and M. Kupper, The algebra of conditional sets and the concepts of conditional topology and compactness, J. Math. Anal. Appl., 437 (2016), 561-589.
doi: 10.1016/j.jmaa.2015.11.057.![]() ![]() ![]() |
[16] |
J. Dronka, B. Wajnryb, P. Witowicz and K. Orzechowski, Growth functions for some uniformly amenable groups, Open Math., 15 (2017), 502-507.
doi: 10.1515/math-2017-0049.![]() ![]() ![]() |
[17] |
T. Eisner, B. Farkas, M. Haase and R. Nagel, Operator Theoretic Aspects of Ergodic Theory, volume 272 of Graduate Texts in Mathematics., Springer, Cham, 2015.
doi: 10.1007/978-3-319-16898-2.![]() ![]() ![]() |
[18] |
G. Elek and B. Szegedy, A measure-theoretic approach to the theory of dense hypergraphs, Adv. Math., 231 (2012), 1731-1772.
doi: 10.1016/j.aim.2012.06.022.![]() ![]() ![]() |
[19] |
R. Ellis, Topological dynamics and ergodic theory, Ergodic Theory Dynam. Systems, 7 (1987), 25-47.
doi: 10.1017/S0143385700003795.![]() ![]() ![]() |
[20] |
A. Ferré Moragues, Properties of multicorrelation sequences and large returns under some ergodicity, Discrete Contin. Dyn. Syst., 41 (2021), 2809-2828.
doi: 10.3934/dcds.2020386.![]() ![]() ![]() |
[21] |
D. Filipović, M. Kupper and N. Vogelpoth, Separation and duality in locally $L^0$-convex modules, J. Funct. Anal., 256 (2009), 3996-4029.
doi: 10.1016/j.jfa.2008.11.015.![]() ![]() ![]() |
[22] |
D. H. Fremlin, Measure Theory, Vol. 3, Torres Fremlin, Colchester, 2004.
![]() ![]() |
[23] |
H. Furstenberg, Ergodic behaviour of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Anal. Math., 31 (1977), 204-256.
doi: 10.1007/BF02813304.![]() ![]() ![]() |
[24] |
H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Legacy Library. Princeton University Press, 2014.
![]() |
[25] |
H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, J. Anal. Math., 34 (1978), 275-291.
doi: 10.1007/BF02790016.![]() ![]() ![]() |
[26] |
E. Glasner, Ergodic Theory via Joinings, Mathematical Surveys and Monographs. American Mathematical Society, 2015.
![]() |
[27] |
A. Jamneshan, An uncountable Furstenberg-Zimmer structure theory, Ergodic Theory and Dynamical Systems, (2022), 1–33.
doi: 10.1017/etds.2022.43.![]() ![]() |
[28] |
A. Jamneshan and T. Tao, Foundational aspects of uncountable measure theory: Gelfand duality, Riesz representation, canonical models, and canonical disintegration, to appear Fund. Math..
![]() |
[29] |
A. Jamneshan and T. Tao, An uncountable Mackey-Zimmer theorem, Studia Math., 266 (2022), 241-289.
doi: 10.4064/sm201125-1-5.![]() ![]() ![]() |
[30] |
A. Jamneshan and T. Tao, An uncountable Moore-Schmidt theorem, Ergodic Theory and Dynamical Systems, (2022), 1–28.
doi: 10.1017/etds.2022.36.![]() ![]() |
[31] |
G. Keller, Amenable groups and varieties of groups, Illinois J. Math., 16 (1972), 257-269.
![]() ![]() |
[32] |
A. Khintchine, Eine Verschärfung des Poincaréschen "Wiederkehrsatzes", Compositio Math., 1 (1935), 177-179.
![]() ![]() |
[33] |
S. Koppelberg, General Theory of Boolean Algebras, In J. Bonk and R. Bonnet, editors, Handbook of Boolean Algebras. North-Holland, 1989.
![]() ![]() |
[34] |
H. Leptin, On locally compact groups with invariant means, Proc. Amer. Math. Soc., 19 (1968), 489-494.
doi: 10.1090/S0002-9939-1968-0239001-7.![]() ![]() ![]() |
[35] |
L. H. Loomis, On the representation of $\sigma$-complete Boolean algebras, Bull. Amer. Math. Soc., 53 (1947), 757-760.
doi: 10.1090/S0002-9904-1947-08866-2.![]() ![]() ![]() |
[36] |
A. L. T. Paterson, Amenability, volume 29 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1988.
doi: 10.1090/surv/029.![]() ![]() ![]() |
[37] |
H. Poincaré, Methodes Nouvelles de la Mécanique Céléste, volume Ⅰ, Ⅱ, Ⅲ., Paris, 1892, 1893, 1899.
![]() |
[38] |
K. Roth, Sur quelques ensembles d'entiers, C. R. Acad. Sci. Paris, 234 (1952), 388-390.
![]() ![]() |
[39] |
R. J. Silverman, Means on semigroups and the Hahn-Banach extension property, Trans. Amer. Math. Soc., 83 (1956), 222-237.
doi: 10.1090/S0002-9947-1956-0084721-7.![]() ![]() ![]() |
[40] |
R. J. Silverman, Invariant means and cones with vector interiors, Trans. Amer. Math. Soc., 88 (1958), 75-79.
doi: 10.1090/S0002-9947-1958-0095414-6.![]() ![]() ![]() |
[41] |
E. Szemerédi, On sets of integers containing no $k$ elements in arithmetic progression, Acta. Arith., 27 (1975), 199-245.
doi: 10.4064/aa-27-1-199-245.![]() ![]() ![]() |
[42] |
M. N. Walsh, Norm convergence of nilpotent ergodic averages, Ann. of Math., 175 (2012), 1667-1688.
doi: 10.4007/annals.2012.175.3.15.![]() ![]() ![]() |
[43] |
J. Wysoczański, On uniformly amenable groups, Proc. Amer. Math. Soc., 102 (1988), 933-938.
doi: 10.1090/S0002-9939-1988-0934870-X.![]() ![]() ![]() |
[44] |
P. Zorin-Kranich, Norm convergence of multiple ergodic averages on amenable groups, J. Anal. Math., 130 (2016), 219-241.
doi: 10.1007/s11854-016-0035-7.![]() ![]() ![]() |