In this paper, we investigate the global well-posedness and the existence of strong global and exponential attractors for a nonlinear strongly damped hyperbolic equation in $ \Omega\subset{\mathbb R}^N $:
$ u_{tt}+\Delta ^2u+\Delta ^2u_t+\Delta \phi (\Delta u) = g(x), $
with the hinged boundary condition. We show that (i) when the nonlinearity $ \phi $ is quasi-monotone and is of at most the critical growth: $ 1\leq p\leq p^{*}: = \frac{N+2}{(N-2)^{+}} \ (N\geq 2) $ and $ g = 0 $, the model has in phase space $ {\mathcal H} = V_3\times L^2 $ a trivial global and exponential attractor, respectively. (ii) In particular when $ N = 1 $, without any polynomial growth restriction for $ \phi $, the model has a strong global and a strong exponential attractor, respectively. These results deepen and extend the related researches on this topic in recent literature [16,22]. The method developed here allows us to establish the existence of the strong global and exponential attractor for this nonlinear model.
Citation: |
[1] |
M. Aassila and A. Guesmia, Energy decay for a damped nonlinear hyperbolic equation, Appl. Math. Lett., 12 (1999), 49-52.
doi: 10.1016/S0893-9659(98)00171-2.![]() ![]() ![]() |
[2] |
A. S. Ackleh, H. T. Banks and G. A. Pinter, A nonlinear beam equation, Appl. Math. Lett., 15 (2002), 381-387.
doi: 10.1016/S0893-9659(01)00147-1.![]() ![]() ![]() |
[3] |
H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problem, in: Schmeisser/Triebel: Function Spaces, Differential Operators and Nonlinear Analysis, Teubner Texte zur Mathematik, vol. 133, Teubner, 1993, 9-126.
doi: 10.1007/978-3-663-11336-2_1.![]() ![]() ![]() |
[4] |
J. M. Arrieta and A. N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, Trans. Amer. Math. Soc., 352 (1999), 285-310.
doi: 10.1090/S0002-9947-99-02528-3.![]() ![]() ![]() |
[5] |
A. V. Babin and M. I. Vishik, Attractors of Evolutionary Equations, North-Holland, Amsterdam, 1992.
![]() ![]() |
[6] |
H. T. Banks, D. S. Gilliam and V. I. Shubov, Global solvability for damped abstractnonlinear hyperbolic systems, Differ. Integral Equ., 100 (1997), 309-332.
![]() ![]() |
[7] |
H. T. Banks, D. S. Gilliam and V. I. Shubov, Well-Posedness for A One Dimensional Nonlinear Beam, In Computation and Control IV, Progress in Systems and Control Theory, Volume 20, Birkh user, Boston, MA, 1995.
![]() ![]() |
[8] |
V. Belleri and V. Pata, Attractors for semilinear strongly damped wave equations on $\mathbb R^3$, Discrete Contin. Dyn. Syst., 7 (2001), 719-735.
doi: 10.3934/dcds.2001.7.719.![]() ![]() ![]() |
[9] |
G. Chen and F. Da, Blow-up of solution of Cauchy problem for three-dimensional damped nonlinear hyperbolic equation, Nonlinear Anal., 71 (2009), 358-372.
doi: 10.1016/j.na.2008.10.132.![]() ![]() ![]() |
[10] |
G. Chen, Y. Wang and Z. Zhao, Blow-up of solution of an initial boundary value problem for a damped nonlinear hyperbolic equation, Appl. Math. Lett., 17 (2004), 491-497.
doi: 10.1016/S0893-9659(04)90116-4.![]() ![]() ![]() |
[11] |
I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, Springer, 2015.
doi: 10.1007/978-3-319-22903-4.![]() ![]() ![]() |
[12] |
I. Chueshov and I. Lasiecka, Attractors for second order evolution equations with a nonlinear damping, J. Dynam. Diff. Eqs., 16 (2004), 469-512.
doi: 10.1007/s10884-004-4289-x.![]() ![]() ![]() |
[13] |
P. Ding, Z. Yang and Y. Zhao, Attractors and their upper semicontinuity for the nonlinear membrane equation with structural damping (in Chinese), Sci. Sin. Math., 51 (2021), 315-332.
doi: 10.1360/SCM-2018-0901.![]() ![]() |
[14] |
M. Efendiev, Y. Yamamoto and A. Yagi, Exponential attractors for non-autonomous dissipative systems, Journal of the Mathematical Society of Japan, 63 (2011), 647-673.
doi: 10.2969/jmsj/06320647.![]() ![]() ![]() |
[15] |
D. Fujiwara, Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order, Proc. Japan Acad., 43 (1967), 82-86.
doi: 10.3792/pja/1195521686.![]() ![]() ![]() |
[16] |
V. Kalantarov and S. Zelik, Finite-dimensional attractors for the nonlinear strongly damped wave equation, J. Differential Equations, 247 (2009), 1120-1155.
doi: 10.1016/j.jde.2009.04.010.![]() ![]() ![]() |
[17] |
I. Lasiecka and R. Triggiani, Regularity theory for a class of non-homogeneous Euler-Bernoulli equations: A cosine operator approach, Series in Pure Mathematics, Topics in Mathematical Analysis, World Scientific Publ. Co., 1989,623-657.
doi: 10.1142/9789814434201_0028.![]() ![]() ![]() |
[18] |
Y. Li and Z. Yang, Optimal attractors of the Kirchhoff wave model with structural nonlinear damping, J. Differential Equations, 268 (2020), 7741-7773.
doi: 10.1016/j.jde.2019.11.084.![]() ![]() ![]() |
[19] |
Y. Li and Z. Yang, Strong attractors and their continuity for the semilinear wave equations with fractional damping, Advances in Differential Equations, 26 (2021), 45-82.
![]() ![]() |
[20] |
Y. Li, Z. Yang and P. Ding, Regular solutions and strong attractors for the Kirchhoff wave model with structural nonlinear damping, Appl. Math. Lett., 104 (2020), 106258.
doi: 10.1016/j.aml.2020.106258.![]() ![]() ![]() |
[21] |
H. Ma and C. Zhong, Attractors for the Kirchhoff equations with strong nonlinear damping, Appl. Math. Lett., 74 (2017), 127-133.
doi: 10.1016/j.aml.2017.06.002.![]() ![]() ![]() |
[22] |
T. Pang and J. Shen, Global existence and asymptotic behaviour of solution for a damped nonlinear hyperbolic equation, Nonlinear Anal., 198 (2020), 111885.
doi: 10.1016/j.na.2020.111885.![]() ![]() ![]() |
[23] |
J. Simon, Compact sets in the space $L^{p}(0, T;B)$, Ann. Mat. Pura. Appl., 146 (1986), 65-96.
doi: 10.1007/BF01762360.![]() ![]() ![]() |
[24] |
C. Song and Z. Yang, Existence and nonexistence of global solutions to the Cauchy problem for a nonlinear beam equation, Math. Meth. Appl. Sci., 33 (2010), 563-575.
doi: 10.1002/mma.1175.![]() ![]() ![]() |
[25] |
Y. Sun and Z. Yang, Strong attractors and their robustness for an extensible beam model with energy damping, Discrete Contin. Dyn. Syst. -B, 27 (2022), 3101-3129.
doi: 10.3934/dcdsb.2021175.![]() ![]() ![]() |
[26] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988.
doi: 10.1007/978-1-4684-0313-8.![]() ![]() ![]() |
[27] |
C.-K. Zhong, M.-H. Yang and C.-Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223 (2006), 367-399.
doi: 10.1016/j.jde.2005.06.008.![]() ![]() ![]() |