This article introduces the notion of good labellings for asymptotic lattices in order to study joint spectra of quantum integrable systems from the point of view of inverse spectral theory. As an application, we consider a new spectral quantity for a quantum integrable system, the quantum rotation number. In the case of two degrees of freedom, we obtain a constructive algorithm for the detection of appropriate labellings for joint eigenvalues, which we use to prove that, in the semiclassical limit, the quantum rotation number can be calculated on a joint spectrum in a robust way, and converges to the well-known classical rotation number. The general results are applied to the semitoric case where formulas become particularly natural.
Citation: |
[1] | V. I. Arnol'd, Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian, Uspehi Mat. Nauk, 18 (1963), 13-40. |
[2] | V. I. Arnol'd, Geometrical Methods in the Theory of Ordinary Differential Equations, vol. 250 of Grundlehren der Mathematischen Wissenschaften, 2nd edition, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1037-5. |
[3] | C. Bernardi, M. Dauge and Y. Maday, Spectral Methods for Axisymmetric Domains, vol. 3 of Series in Applied Mathematics (Paris), Gauthier-Villars, Éditions Scientifiques et Médicales Elsevier, Paris; North-Holland, Amsterdam, 1999. |
[4] | P. M. Bleher, Semiclassical quantization rules near separatrices, Comm. Math. Phys., 165 (1994), 621-640, Available from: http://projecteuclid.org/euclid.cmp/1104271416. doi: 10.1007/BF02099426. |
[5] | P. M. Bleher, Distribution of energy levels of a quantum free particle on a surface of revolution, Duke Math. J., 74 (1994), 45-93. doi: 10.1215/S0012-7094-94-07403-6. |
[6] | P. M. Bleher, D. V. Kosygin and Y. G. Sinai, Distribution of energy levels of quantum free particle on the Liouville surface and trace formulae, Commun. Math. Phys., 170 (1995), 375-403. doi: 10.1007/BF02108334. |
[7] | A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian Systems; Geometry, Topology, Classification, Translated from the 1999 Russian original, Chapman & Hall, 2004. doi: 10.1201/9780203643426. |
[8] | H. Broer, K. Efstathiou and O. Lukina, A geometric fractional monodromy theorem, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 517-532. doi: 10.3934/dcdss.2010.3.517. |
[9] | A.-M. Charbonnel, Comportement semi-classique du spectre conjoint d'opérateurs pseudo-différentiels qui commutent, Asymptotic Analysis, 1 (1988), 227-261. doi: 10.3233/ASY-1988-1305. |
[10] | L. Charles, Quasimodes and Bohr-Sommerfeld conditions for the Toeplitz operators, Comm. Partial Differential Equations, 28 (2003), 1527-1566. doi: 10.1081/PDE-120024521. |
[11] | L. Charles, Á. Pelayo and S. Vũ Ngọc, Isospectrality for quantum toric integrable systems, Ann. Sci. École Norm. Sup., 46 (2013), 815-849. doi: 10.24033/asens.2202. |
[12] | Y. Colin de Verdière, Quasi-modes sur les variétés Riemanniennes, Invent. Math., 43 (1977), 15-52. doi: 10.1007/BF01390202. |
[13] | Y. Colin de Verdière, Spectre conjoint d'opérateurs pseudo-différentiels qui commutent I, Duke Math. J., 46 (1979), 169-182. doi: 10.1215/S0012-7094-79-04608-8. |
[14] | Y. Colin de Verdière, Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques, Comment. Math. Helv., 54 (1979), 508-522. doi: 10.1007/BF02566290. |
[15] | Y. Colin de Verdière, Spectre conjoint d'opérateurs pseudo-différentiels qui commutent II, Math. Z., 171 (1980), 51-73. doi: 10.1007/BF01215054. |
[16] | Y. Colin de Verdière and B. Parisse, Équilibre instable en régime semi-classique I : Concentration microlocale, Comm. Partial Differential Equations, 19 (1994), 1535-1563. doi: 10.1080/03605309408821063. |
[17] | Y. Colin de Verdière and B. Parisse, Équilibre instable en régime semi-classique II : Conditions de Bohr-Sommerfeld, Ann. Inst. H. Poincaré. Phys. Théor., 61 (1994), 347-367, http://www.numdam.org/item/?id=AIHPA_1994__61_3_347_0. |
[18] | Y. Colin de Verdière and S. Vũ Ngọc, Singular Bohr-Sommerfeld rules for 2D integrable systems, Ann. Sci. École Norm. Sup., 36 (2003), 1-55. doi: 10.1016/S0012-9593(03)00002-8. |
[19] | R. H. Cushman and L. M. Bates, Global Aspects of Classical Integrable Systems, Birkhäuser, 1997. doi: 10.1007/978-3-0348-8891-2. |
[20] | R. Cushman and J. J. Duistermaat, The quantum spherical pendulum, Bull. Amer. Math. Soc. (N.S.), 19 (1988), 475-479. doi: 10.1090/S0273-0979-1988-15705-9. |
[21] | R. Cushman, H. Dullin, A. Giacobbe, D. Holm, M. joyeux, P. Lynch, D. Sadovskii and B. Zhilinskii, The $ \rm CO_2$ molecule as a quantum realization of the $1: 1: 2$ resonant swing-spring with monodromy, Phys. Rev. Lett., 93. |
[22] | K. Datchev and H. Hezari, Inverse problems in spectral geometry, in Inverse Problems and Applications: Inside Out. II, vol. 60 of Math. Sci. Res. Inst. Publ., Cambridge Univ. Press, Cambridge, 2013,455-485. |
[23] | M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit, vol. 268 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9780511662195. |
[24] | S. Dozias, Clustering for the spectrum of $h$-pseudodifferential operators with periodic flow on an energy surface, J. Funct. Anal., 145 (1997), 296-311. doi: 10.1006/jfan.1996.3023. |
[25] | E. B. Dryden, V. Guillemin and R. Sena-Dias, Equivariant inverse spectral theory and toric orbifolds, Advances in Mathematics, 231 (2012), 1271-1290. doi: 10.1016/j.aim.2012.06.018. |
[26] | J. J. Duistermaat, On global action-angle variables, Comm. Pure Appl. Math., 33 (1980), 687-706. doi: 10.1002/cpa.3160330602. |
[27] | J. J. Duistermaat and V. W. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., 29 (1975), 39-79. doi: 10.1007/BF01405172. |
[28] | H. R. Dullin, Semi-global symplectic invariants of the spherical pendulum, J. Differential Equations, 254 (2013), 2942-2963. doi: 10.1016/j.jde.2013.01.018. |
[29] | A. Giacobbe, Fractional monodromy: Parallel transport of homology cycles, Differential Geometry and its Applications, 26 (2008), 140-150. doi: 10.1016/j.difgeo.2007.11.011. |
[30] | M. A. Hall, Diophantine tori and non-selfadjoint inverse spectral problems, Math. Res. Lett., 20 (2013), 255-271. doi: 10.4310/MRL.2013.v20.n2.a4. |
[31] | M. A. Hall, M. Hitrik and J. Sjöstrand, Spectra for semiclassical operators with periodic bicharacteristics in dimension two, Int. Math. Res. Not., 2015 (2015), 10243-10277. doi: 10.1093/imrn/rnu270. |
[32] | K. Hamraoui, L. Van Damme, P. MardešiĆ and D. Sugny, Classical and quantum rotation numbers of asymmetric-top molecules, Phys. Rev. A, 97 (2018), 032118. doi: 10.1103/PhysRevA.97.032118. |
[33] | M. Hitrik and J. Sjöstrand, Rational invariant tori and band edge spectra for non-selfadjoint operators, J. Eur. Math. Soc, 20 (2018), 391-457. doi: 10.4171/JEMS/770. |
[34] | M. Hitrik and J. Sjöstrand, Non-selfadjoint perturbations of selfadjoint operators in 2 dimensions. I, Ann. Henri Poincaré, 5 (2004), 1-73. doi: 10.1007/s00023-004-0160-1. |
[35] | M. Hitrik, J. Sjöstrand and S. V. Ngọc, Diophantine tori and spectral asymptotics for non-selfadjoint operators, Amer. J. Math., 129 (2007), 105-182. doi: 10.1353/ajm.2007.0001. |
[36] | S. Hohloch, S. Sabatini, D. Sepe and M. Symington, Faithful semitoric systems, SIGMA Symmetry Integrability Geom. Methods Appl., 14 (2018), Paper No. 084, 66 pp. doi: 10.3842/SIGMA.2018.084. |
[37] | A. Iantchenko, J. Sjöstrand and M. Zworski, Birkhoff normal forms in semi-classical inverse problems, Math. Res. Lett., 9 (2002), 337-362. doi: 10.4310/MRL.2002.v9.n3.a9. |
[38] | M. Joyeux, D. A. Sadovskii and J. Tennyson, Monodromy of the LiNC/NCLi molecule, Chemical Physics Letters, 382 (2003), 439-442. doi: 10.1016/j.cplett.2003.10.099. |
[39] | Y. Karshon, Periodic Hamiltonian Flows on Four Dimensional Manifolds, Mem. Amer. Math. Soc., 141, 1999. doi: 10.1090/memo/0672. |
[40] | M. Kontsevich and Y. Soibelman, Affine structures and non-Archimedean analytic spaces, in The Unity of Mathematics, vol. 244 of Progr. Math., Birkhäuser Boston, Boston, MA, 2006,321-385. doi: 10.1007/0-8176-4467-9_9. |
[41] | V. F. Lazutkin, KAM Theory and Semiclassical Approximations to Eigenfunctions, vol. 24 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Springer-Verlag, Berlin, 1993, With an addendum by A. I. Shnirelman. doi: 10.1007/978-3-642-76247-5. |
[42] | Y. Le Floch, A Brief Introduction to Berezin-Toeplitz Operators on Compact Kähler Manifolds, CRM Short Courses, Springer, Cham, 2018. doi: 10.1007/978-3-319-94682-5. |
[43] | Y. Le Floch and Á. Pelayo, Symplectic geometry and spectral properties of classical and quantum coupled angular momenta, J. Nonlinear Sci., 29 (2019), 655-708. doi: 10.1007/s00332-018-9501-y. |
[44] | Y. Le Floch, Á. Pelayo and S. Vũ Ngọc, Inverse spectral theory for semiclassical Jaynes-Cummings systems, Math. Ann., 364 (2016), 1393-1413. doi: 10.1007/s00208-015-1259-z. |
[45] | Y. Le Floch and S. Vũ Ngọc, The inverse spectral problem for quantum semitoric systems, 2021, Preprint, arXiv: 2104.06704, (105 pp). |
[46] | N. C. Leung and M. Symington, Almost toric symplectic four-manifolds, J. Symplectic Geom., 8 (2010), 143-187. doi: 10.4310/JSG.2010.v8.n2.a2. |
[47] | A. Martinez, An Introduction to Semiclassical and Microlocal Analysis, Universitext, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-4495-8. |
[48] | C. März, Spectral asymptotics for Hill's equation near the potential maximum, Asymptotic Analysis, 5 (1992), 221-267. doi: 10.3233/ASY-1992-5302. |
[49] | H. Mineur, Sur les systèmes mécaniques dans lesquels figurent des paramètres fonctions du temps. Étude des systèmes admettant $n$ intégrales premières uniformes en involution. Extension à ces systèmes des conditions de quantification de Bohr-Sommerfeld., J. Ecole Polytechn., III (1937), 173-191,237-270. |
[50] | J. Palmer, Á. Pelayo and X. Tang, Semitoric systems of non-simple type, 2019, arXiv: 1909.03501. |
[51] | Á. Pelayo and S. Vũ Ngọc, Semitoric integrable systems on symplectic 4-manifolds, Invent. Math., 177 (2009), 571-597. doi: 10.1007/s00222-009-0190-x. |
[52] | Á. Pelayo and S. Vũ Ngọc, Constructing integrable systems of semitoric type, Acta Math., 206 (2011), 93-125. doi: 10.1007/s11511-011-0060-4. |
[53] | Á. Pelayo, T. S. Ratiu and S. Vũ Ngọc, The affine invariant of generalized semitoric systems, Nonlinearity, 30 (2017), 3993-4028. doi: 10.1088/1361-6544/aa8aec. |
[54] | Á. Pelayo and S. Vũ Ngọc, Symplectic theory of completely integrable Hamiltonian systems, Bull. Amer. Math. Soc. (N.S.), 48 (2011), 409-455. doi: 10.1090/S0273-0979-2011-01338-6. |
[55] | Á. Pelayo and S. Vũ Ngọc, First steps in symplectic and spectral theory of integrable systems, Discrete Contin. Dyn. Syst., 32 (2012), 3325-3377. doi: 10.3934/dcds.2012.32.3325. |
[56] | Á. Pelayo and S. Vũ Ngọc, Semiclassical inverse spectral theory for singularities of focus-focus type, Commun. Math. Phys., 329 (2014), 809-820. doi: 10.1007/s00220-014-1998-9. |
[57] | Q. S. Phan, Spectral monodromy of non-self-adjoint operators, J. Math. Phys., 55 (2014), 013504. doi: 10.1063/1.4855475. |
[58] | J. Pöschel, A lecture on the classical KAM theorem, in Smooth Ergodic Theory and its Applications (Seattle, WA, 1999), vol. 69 of Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 2001,707-732. doi: 10.1090/pspum/069/1858551. |
[59] | T. Ratiu, C. Wacheux and N. T. Zung, Convexity of singular affine structures and toric-focus integrable hamiltonian systems, arXiv: 1706.01093. |
[60] | D. A. Sadovskií and B. I. Zhilinskií, Monodromy, diabolic points, and angular momentum coupling, Phys. Lett. A, 256 (1999), 235-244. doi: 10.1016/S0375-9601(99)00229-7. |
[61] | D. Sepe and S. Vũ Ngọc, Integrable systems, symmetries, and quantization, Lett. Math. Phys., 108 (2018), 499-571, URL http://rdcu.be/xNnu. doi: 10.1007/s11005-017-1018-z. |
[62] | M. Symington, Four dimensions from two in symplectic topology, in Topology and Geometry of Manifolds (Athens, GA, 2001), vol. 71 of Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 2003,153-208. doi: 10.1090/pspum/071/2024634. |
[63] | J. A. Toth, Various quantum mechanical aspects of quadratic forms, Jour. Funct. Analysis, 130 (1995), 1-42. doi: 10.1006/jfan.1995.1062. |
[64] | S. Vũ Ngọc, Symplectic inverse spectral theory for pseudodifferential operators, in Geometric Aspects of Analysis and Mechanics, vol. 292 of Progr. Math., Birkhäuser/Springer, New York, 2011,353-372. doi: 10.1007/978-0-8176-8244-6_13. |
[65] | S. Vũ Ngọc, Quantum monodromy in integrable systems, Commun. Math. Phys., 203 (1999), 465-479. doi: 10.1007/s002200050621. |
[66] | S. Vũ Ngọc, Bohr-Sommerfeld conditions for integrable systems with critical manifolds of focus-focus type, Comm. Pure Appl. Math., 53 (2000), 143-217. doi: 10.1002/(SICI)1097-0312(200002)53:2<143::AID-CPA1>3.0.CO;2-D. |
[67] | S. Vũ Ngọc, Quantum monodromy and bohr–sommerfeld rules, Letters in Mathematical Physics, 55 (2001), 205-217. doi: 10.1023/A:1010944312712. |
[68] | S. Vũ Ngọc, Systèmes Intégrables Semi-Classiques: Du Local au Global, no. 22 in Panoramas et Synthèses, SMF, 2006. |
[69] | S. Vũ Ngọc, Moment polytopes for symplectic manifolds with monodromy, Adv. in Math., 208 (2007), 909-934. doi: 10.1016/j.aim.2006.04.004. |
[70] | D. R. Yafaev, Passage through a potential barrier and multiple wells, Algebra i Analiz, 29 (2017), 242-273, Reprinted in St. Petersburg Math. J., 29 (2018), 399-422. doi: 10.1090/spmj/1499. |
[71] | S. Zelditch, The inverse spectral problem for surfaces of revolution, J. Differential Geom., 49 (1998), 207-264. doi: 10.4310/jdg/1214461019. |
[72] | N. T. Zung, Symplectic topology of integrable hamiltonian systems, I: Arnold-Liouville with singularities, Compositio Math., 101 (1996), 179-215, http://www.numdam.org/item/?id=CM_1996__101_2_179_0. |
[73] | M. Zworski, Semiclassical Analysis, vol. 138 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2012. doi: 10.1090/gsm/138. |
The semitoric rotation number
Joint spectrum of the Spherical Pendulum. Joint eigenvalues are organized along vertical lines indexed by
Classical (left) and quantum (right) rotation numbers for an axisymmetric Schrödinger operator on the sphere
The labelling algorithm
The point