We study the $ L^2 $-gradient flow of functionals $ \mathscr F $ depending on the eigenvalues of Schrödinger potentials $ V $ for a wide class of differential operators associated with closed, symmetric, and coercive bilinear forms, including the case of all the Dirichlet forms (such as for second order elliptic operators in Euclidean domains or Riemannian manifolds).
We suppose that $ \mathscr F $ arises as the sum of a $ (-\theta) $-convex functional $ \mathscr K $ with proper domain $ {\mathbb K}\subset L^2 $, forcing the admissible potentials to stay above a constant $ V_{\rm min} $, and a term $ {\mathscr{H}}(V) = \varphi(\lambda_1(V), \cdots, \lambda_ J(V)) $ which depends on the first $ J $ eigenvalues associated with $ V $ through a $ {\mathrm C}^1 $ function $ \varphi $.
Even though $ {\mathscr{H}} $ is not a smooth perturbation of a convex functional (and it is in fact concave in simple important cases as the sum of the first $ J $ eigenvalues) and we do not assume any compactness of the sublevels of $ \mathscr K $, we prove the convergence of the Minimizing Movement method to a solution $ V\in H^1(0, T;L^2) $ of the differential inclusion $ V'(t)\in -\partial_L^- \mathscr F(V(t)) $, which under suitable compatibility conditions on $ \varphi $ can be written as
$ V'(t)+\sum\limits_{i = 1}^ J\partial_i\varphi(\lambda_1(V(t)), \dots, \lambda_ J(V(t)))u_i^2(t)\in -\partial_F^- \mathscr K(V(t)) $
where $ (u_1(t), \dots, u_ J(t)) $ is an orthonormal system of eigenfunctions associated with the eigenvalues $ (\lambda_1(V(t)), , \dots, \lambda_ J(V(t))) $ and $ \partial^-_L $ (resp. $ \partial^-_F $) denotes the limiting (resp. Fréchet) subdifferential.
Citation: |
[1] | L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, second edition, 2008. |
[2] | H. Attouch, Variational Convergence for Functions and Operators, Applicable Mathematics Series. Pitman (Advanced Publishing Program), Boston, MA, 1984. |
[3] | H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. Ⅰ. Species persistence, J. Math. Biol., 51 (2005), 75-113. doi: 10.1007/s00285-004-0313-3. |
[4] | J. M. Borwein and Q. J. Zhu, A survey of subdifferential calculus with applications, Nonlinear Anal., 38 (1999), 687-773. doi: 10.1016/S0362-546X(98)00142-4. |
[5] | H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions Dans Les Espaces de Hilbert, North-Holland Mathematics Studies, No. 50. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. |
[6] | D. Bucur, G. Buttazzo and U. Stefanelli, Shape flows for spectral optimization problems, Interfaces Free Bound., 14 (2012), 521-544. doi: 10.4171/IFB/290. |
[7] | G. Buttazzo and G. Dal Maso, An existence result for a class of shape optimization problems, Arch. Rational Mech. Anal., 122 (1993), 183-195. doi: 10.1007/BF00378167. |
[8] | G. Buttazzo, A. Gerolin, B. Ruffini and B. Velichkov, Optimal potentials for Schrödinger operators, J. Éc. Polytech. Math., 1 (2014), 71-100. doi: 10.5802/jep.4. |
[9] | R. S. Cantrell and C. Cosner, Diffusive logistic equations with indefinite weights: Population models in disrupted environments, Proc. Roy. Soc. Edinburgh Sect. A, 112 (1989), 293-318. doi: 10.1017/S030821050001876X. |
[10] | P. G. Ciarlet and J.-L. Lions, editors, Handbook of Numerical Analysis. Vol. II, Handbook of Numerical Analysis, Ⅱ. North-Holland, Amsterdam, 1991. Finite element methods. Part 1. |
[11] | F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, volume 178 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1998. |
[12] | G. Da Prato and J. Zabczyk, Second Order Partial Differential Equations in Hilbert Spaces, Volume 293 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511543210. |
[13] | G. Dal Maso, An Introduction to $\Gamma$-Convergence, Volume 8 of Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0327-8. |
[14] | E. B. Davies, Heat Kernels and Spectral Theory, Volume 92 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1990. |
[15] | G. Doǧan, P. Morin, R. H. Nochetto and M. Verani, Discrete gradient flows for shape optimization and applications, Comput. Methods Appl. Mech. Engrg., 196 (2007), 3898-3914. doi: 10.1016/j.cma.2006.10.046. |
[16] | N. Dunford and J. T. Schwartz, Linear Operators. Part II, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. Spectral Theory. Selfadjoint Operators in Hilbert Space, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1963 original, A Wiley-Interscience Publication. |
[17] | M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Volume 19 of De Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, extended edition, 2011. |
[18] | A. Henrot, editor, Shape Optimization and Spectral Theory, De Gruyter, 2017. |
[19] | A. Henrot and M. Pierre, Shape Variation and Optimization. A Geometrical Analysis, English Version of the French Publication with Additions and Updates, Volume 28 of EMS Tracts in Mathematics, European Mathematical Society (EMS), Zürich, 2018. doi: 10.4171/178. |
[20] | J.-B. Hiriart-Urruty and D. Ye, Sensitivity analysis of all eigenvalues of a symmetric matrix, Numer. Math., 70 (1995), 45-72. doi: 10.1007/s002110050109. |
[21] | A. Ja. Kruger and B. Š. Mordukhovich, Extremal points and the Euler equation in nonsmooth optimization problems, Dokl. Akad. Nauk BSSR, 24 (1980), 684-687, 763. |
[22] | J. Lamboley, A. Laurain, G. Nadin and Y. Privat, Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions, Calc. Var. Partial Differential Equations, 55 (2016), Art. 144, 37 pp. doi: 10.1007/s00526-016-1084-6. |
[23] | A. W. Marshall, I. Olkin and B. C. Arnold, Inequalities: Theory of Majorization and its Applications, Springer Series in Statistics. Springer, New York, second edition, 2011. doi: 10.1007/978-0-387-68276-1. |
[24] | B. Sh. Mordukhovich, Maximum principle in the problem of time optimal response with nonsmooth constraints, Prikl. Mat. Meh., 40 (1976), 1014-1023. doi: 10.1016/0021-8928(76)90136-2. |
[25] | B. Sh. Mordukhovich, Nonsmooth analysis with nonconvex generalized differentials and conjugate mappings, Dokl. Akad. Nauk BSSR, 28 (1984), 976-979. |
[26] | M. L. Overton and R. S. Womersley, Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices, Math. Programming, 62 (1993), 321-357. doi: 10.1007/BF01585173. |
[27] | R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Volume 317 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-642-02431-3. |
[28] | R. Rossi and G. Savaré, Gradient flows of non convex functionals in hilbert spaces and applications, ESAIM Control Optim. Calc. Var., 12 (2006), 564-614. doi: 10.1051/cocv:2006013. |
[29] | W. Rudin, Functional Analysis, McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. |