We consider the initial value problem for cubic derivative nonlinear Schrödinger equations possessing weakly dissipative structure in one space dimension. We show that the small data solution decays like $ O((\log t)^{-1/4}) $ in $ L^2 $ as $ t\to +\infty $. Furthermore, we find that this $ L^2 $-decay rate is optimal by giving a lower estimate of the same order.
Citation: |
[1] |
T. Cazenave and Z. Han, Asymptotic behavior for a Schrödinger equation with nonlinear subcritical dissipation, Discrete Contin. Dyn. Syst., 40 (2020), 4801-4819.
doi: 10.3934/dcds.2020202.![]() ![]() ![]() |
[2] |
T. Cazenave, Z. Han and I. Naumkin, Asymptotic behavior for a dissipative nonlinear Schrödinger equation, Nonlinear Anal., 205 (2021), Paper No. 112243, 37 pp.
doi: 10.1016/j.na.2020.112243.![]() ![]() ![]() |
[3] |
N. Hayashi, C. Li and P. I. Naumkin, Time decay for nonlinear dissipative Schrödinger equations in optical fields, Adv. Math. Phys., 2016, Article ID 3702738.
doi: 10.1155/2016/3702738.![]() ![]() ![]() |
[4] |
N. Hayashi, C. Li and P. I. Naumkin, Upper and lower time decay bounds for solutions of dissipative nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 16 (2017), 2089-2104.
doi: 10.3934/cpaa.2017103.![]() ![]() ![]() |
[5] |
N. Hayashi and P. I. Naumkin, Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations, Amer. J. Math., 120 (1998), 369-389.
doi: 10.1353/ajm.1998.0011.![]() ![]() ![]() |
[6] |
N. Hayashi and P. I. Naumkin, Asymptotics of small solutions to nonlinear Schrödinger equations with cubic nonlinearities, Int. J. Pure Appl. Math., 3 (2002), 255-273.
![]() ![]() |
[7] |
N. Hayashi, P. I. Naumkin and H. Sunagawa, On the Schrödinger equation with dissipative nonlinearities of derivative type, SIAM J. Math. Anal., 40 (2008), 278-291.
doi: 10.1137/070689103.![]() ![]() ![]() |
[8] |
G. Hoshino, Asymptotic behavior for solutions to the dissipative nonlinear Schrödinger equations with the fractional Sobolev space, J. Math. Phys., 60 (2019), 111504, 11 pp.
doi: 10.1063/1.5125161.![]() ![]() ![]() |
[9] |
G. Hoshino, Dissipative nonlinear Schrödinger equations for large data in one space dimension, Commun. Pure Appl. Anal., 19 (2020), 967-981.
doi: 10.3934/cpaa.2020044.![]() ![]() ![]() |
[10] |
G. Jin, Y. Jin and C. Li, The initial value problem for nonlinear Schrödinger equations with a dissipative nonlinearity in one space dimension, J. Evol. Equ., 16 (2016), 983-995.
doi: 10.1007/s00028-016-0327-5.![]() ![]() ![]() |
[11] |
S. Katayama, C. Li and H. Sunagawa, A remark on decay rates of solutions for a system of quadratic nonlinear Schrödinger equations in 2D, Differential Integral Equations, 27 (2014), 301-312, https://projecteuclid.org/journals/differential-and-integral-equations/volume-27/issue-3_2f_4/A-remark-on-decay-rates-of-solutions-for-a-system/die/1391091368.short.
![]() ![]() |
[12] |
D. Kim, A note on decay rates of solutions to a system of cubic nonlinear Schrödinger equations in one space dimension, Asymptot. Anal., 98 (2016), 79-90.
doi: 10.3233/ASY-161362.![]() ![]() ![]() |
[13] |
N. Kita and C. Li, Decay estimate of solutions to dissipative nonlinear Schrödinger equations, OCAMI Preprint Series, 20-5 (2020).
![]() |
[14] |
N. Kita and Y. Nakamura, Decay estimate and asymptotic behavior of small solutions to Schrödinger equations with subcritical dissipative nonlinearity, Adv. Stud. Pure Math., 81 (2019), 121-138.
doi: 10.2969/aspm/08110121.![]() ![]() ![]() |
[15] |
N. Kita and T. Sato, Optimal $L^2$-decay of solutions to a cubic dissipative nonlinear Schrödinger equation, Asymptotic Analysis, to appear.
![]() |
[16] |
N. Kita and A. Shimomura, Large time behavior of solutions to Schrödinger equations with a dissipative nonlinearity for arbitrarily large initial data, J. Math. Soc. Japan, 61 (2009), 39-64.
doi: 10.2969/jmsj/06110039.![]() ![]() ![]() |
[17] |
C. Li, Y. Nishii, Y. Sagawa and H. Sunagawa, Large time asymptotics for a cubic nonlinear Schrödinger system in one space dimension, Funkcialaj Ekvacioj, 64 (2021), 361-377.
doi: 10.1619/fesi.64.361.![]() ![]() ![]() |
[18] |
C. Li, Y. Nishii, Y. Sagawa and H. Sunagawa, Large time asymptotics for a cubic nonlinear Schrödinger system in one space dimension, II, Tokyo J. Math., 44 (2021), 411-416.
doi: 10.3836/tjm/1502179340.![]() ![]() ![]() |
[19] |
C. Li, Y. Nishii, Y. Sagawa and H. Sunagawa, On the derivative nonlinear Schrödinger equation with weakly dissipative structure, J. Evol. Equ., 21 (2021), 1541-1550.
doi: 10.1007/s00028-020-00634-6.![]() ![]() ![]() |
[20] |
C. Li and H. Sunagawa, On Schrödinger systems with cubic dissipative nonlinearities of derivative type, Nonlinearity, 29 (2016), 1537-1563; Corrigendum, ibid., C1-C2.
doi: 10.1088/0951-7715/29/5/1537.![]() ![]() ![]() |
[21] |
J. Murphy and F. Pusateri, Almost global existence for cubic nonlinear Schrödinger equations in one space dimension, Discrete Contin. Dyn. Syst., 37 (2017), 2077-2102.
doi: 10.3934/dcds.2017089.![]() ![]() ![]() |
[22] |
T. Ogawa and T. Sato, $L^2$-decay rate for the critical nonlinear Schrödinger equation with a small smooth data, NoDEA Nonlinear Differential Equations Appl., 27 (2020), Paper No.18, 20 pp.
doi: 10.1007/s00030-020-0621-3.![]() ![]() ![]() |
[23] |
Y. Sagawa and H. Sunagawa, The lifespan of small solutions to cubic derivative nonlinear Schrödinger equations in one space dimension, Discrete Contin. Dyn. Syst., 36 (2016), 5743-5761.
doi: 10.3934/dcds.2016052.![]() ![]() ![]() |
[24] |
Y. Sagawa and H. Sunagawa, Corrigendum to "The lifespan of small solutions to cubic derivative nonlinear Schrödinger equations in one space dimension" [Discrete Contin. Dyn. Syst.,
36 (2016), 5743-5761], Discrete Contin. Dyn. Syst., 40 (2020), 4577-4578.
doi: 10.3934/dcds.2020192.![]() ![]() ![]() |
[25] |
T. Sato, $L^2$-decay estimate for the dissipative nonlinear Schrödinger equation in the Gevrey class, Arch. Math., (Basel), 115 (2020), 575-588.
doi: 10.1007/s00013-020-01483-y.![]() ![]() ![]() |
[26] |
T. Sato, Lower bound estimate for the dissipative nonlinear Schrödinger equation, Partial Differ. Equ. Appl., 2 (2021), Paper No. 66, 11 pp.
doi: 10.1007/s42985-021-00119-2.![]() ![]() ![]() |
[27] |
A. Shimomura, Asymptotic behavior of solutions for Schrödinger equations with dissipative nonlinearities, Comm. Partial Differential Equations, 31 (2006), 1407-1423.
doi: 10.1080/03605300600910316.![]() ![]() ![]() |
[28] |
H. Sunagawa, Large time behavior of solutions to the Klein-Gordon equation with nonlinear dissipative terms, J. Math. Soc. Japan, 58 (2006), 379-400.
doi: 10.2969/jmsj/1149166781.![]() ![]() ![]() |
[29] |
H. Sunagawa, Lower bounds of the lifespan of small data solutions to the nonlinear Schrödinger equations, Osaka J. Math., 43 (2006), 771-789, https://projecteuclid.org/journals/osaka-journal-of-mathematics/volume-43/issue-4/Lower-bounds-of-the-lifespan-of-small-data-solutions-to/ojm/1165850035.full.
![]() ![]() |
[30] |
H. Sunagawa, The lifespan of solutions to nonlinear Schrödinger and Klein-Gordon equations, Hokkaido Math. J., 37 (2008), 825-838.
doi: 10.14492/hokmj/1249046371.![]() ![]() ![]() |