\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Linear stability of the elliptic relative equilibrium with $ (1 + 7) $-gon central configuration in planar $ N $-body problem

  • *Corresponding author: Jiexin Sun

    *Corresponding author: Jiexin Sun

The first author is partially supported by NSFC 11801583, 12071255, and the Qilu Young Scholar Program of Shandong University. The second author is partially supported by NSFC 12071255.

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • The $ (1+n) $-gon elliptic relative equilibrium (ERE for short) is the planar central configuration solution consisting of $ n $ unit masses at the vertices of a regular $ n $-gon with a body of mass $ m $ at the center, and each particle moves on a Keplerian orbit with a common eccentricity $ e\in [0,1) $. Maxwell first considered this model in his study on the stability of the Saturn's rings. Moeckel [10] proves that for $ e = 0 $, the $ (1+n) $-gon is linearly stable for sufficiently large $ m $ for $ n\geq7 $. A natural question is that whether Moeckel's stability result holds for $ e>0 $. In the recent paper [2], Hu, Long and Ou give an affirmative answer for $ n\geq8 $, but the case $ n = 7 $ is difficult and still open. In this paper, we show that it is also true for $ n = 7 $, that is the $ (1+7) $-gon ERE is still linearly stable for any $ e\in(0,1) $ when $ m $ is large enough.

    Mathematics Subject Classification: Primary: 37J25, 70F10, 37J46, 53D12.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. AlbouyH. E. Cabral and A. A. Santos, Some problems on the classical n-body problem, Celest. Mech. Dyn. Astr, 113 (2012), 369-375.  doi: 10.1007/s10569-012-9431-1.
    [2] X. HuY. Long and Y. Ou, Linear stability of the elliptic relative equilibrium with $(1+n)$-gon central configurations in planar $n$-body problem, Nonlinearity, 33 (2020), 1016-1045.  doi: 10.1088/1361-6544/ab5927.
    [3] X. HuY. Long and S. Sun, Linear stability of elliptic Lagrangian solutions of the planar three-body problem via index theory, Arch. Ration. Mech. Anal., 213 (2014), 993-1045.  doi: 10.1007/s00205-014-0749-6.
    [4] X. Hu, Y. Ou and G. Yu, Index theory for homographic solution of planar central configurations with any engergy, preprint. 2022.
    [5] X. Hu and S. Sun, Morse index and stability of elliptic Lagrangian solutions in the planar three-body problem, Adv. Math., 223 (2010), 98-119.  doi: 10.1016/j.aim.2009.07.017.
    [6] T. Kato, Perturbution Theory for Linear Operators, Second edition, Springer-Verlag, Berlin Heidelberg New York Tokyo, 1984.
    [7] Y. Long, Index Theory for Symplectic Paths with Applications, Progress in Math., Vol. 207, Birkhäuser, Basel. 2002. doi: 10.1007/978-3-0348-8175-3.
    [8] J. C. Maxwell, Stability of the Motion of Saturn's Ring, W. D.Niven, editor, The Scientific Papers of James Clerk Maxwell, Cambiridge University Press, Cambridge, 1890.
    [9] K. R. Meyer and D. S. Schmidt, Elliptic relative equilibria in the N-body problem, J. Diff. Equa., 214 (2005), 256-298.  doi: 10.1016/j.jde.2004.09.006.
    [10] R. Moeckel, Linear stability analysis of some symmetrical classes of relative equilibria, Hamiltonian Dynamical Systems, (Cincinnati, OH, 1992), 291-317, IMA Vol. Math Appl., 63, Springer, New York, 1995. doi: 10.1007/978-1-4613-8448-9_20.
    [11] G. E. Roberts, Linear stability in the $1+N$-gon relative equilibrium, http://mathcs.holycross.edu/~groberts/Papers/HAMSYS-98.pdf. doi: 10.1142/9789812792099_0018.
    [12] R. J. Vanderbei and E. Kolemen, Linear stability of ring systems, The Astronomical Journal, 133 (2007), 656-664.  doi: 10.1086/510457.
  • 加载中
SHARE

Article Metrics

HTML views(3178) PDF downloads(147) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return