The $ (1+n) $-gon elliptic relative equilibrium (ERE for short) is the planar central configuration solution consisting of $ n $ unit masses at the vertices of a regular $ n $-gon with a body of mass $ m $ at the center, and each particle moves on a Keplerian orbit with a common eccentricity $ e\in [0,1) $. Maxwell first considered this model in his study on the stability of the Saturn's rings. Moeckel [
| Citation: |
| [1] |
A. Albouy, H. E. Cabral and A. A. Santos, Some problems on the classical n-body problem, Celest. Mech. Dyn. Astr, 113 (2012), 369-375.
doi: 10.1007/s10569-012-9431-1.
|
| [2] |
X. Hu, Y. Long and Y. Ou, Linear stability of the elliptic relative equilibrium with $(1+n)$-gon central configurations in planar $n$-body problem, Nonlinearity, 33 (2020), 1016-1045.
doi: 10.1088/1361-6544/ab5927.
|
| [3] |
X. Hu, Y. Long and S. Sun, Linear stability of elliptic Lagrangian solutions of the planar three-body problem via index theory, Arch. Ration. Mech. Anal., 213 (2014), 993-1045.
doi: 10.1007/s00205-014-0749-6.
|
| [4] |
X. Hu, Y. Ou and G. Yu, Index theory for homographic solution of planar central configurations with any engergy, preprint. 2022.
|
| [5] |
X. Hu and S. Sun, Morse index and stability of elliptic Lagrangian solutions in the planar three-body problem, Adv. Math., 223 (2010), 98-119.
doi: 10.1016/j.aim.2009.07.017.
|
| [6] |
T. Kato, Perturbution Theory for Linear Operators, Second edition, Springer-Verlag, Berlin Heidelberg New York Tokyo, 1984.
|
| [7] |
Y. Long, Index Theory for Symplectic Paths with Applications, Progress in Math., Vol. 207, Birkhäuser, Basel. 2002.
doi: 10.1007/978-3-0348-8175-3.
|
| [8] |
J. C. Maxwell, Stability of the Motion of Saturn's Ring, W. D.Niven, editor, The Scientific Papers of James Clerk Maxwell, Cambiridge University Press, Cambridge, 1890.
|
| [9] |
K. R. Meyer and D. S. Schmidt, Elliptic relative equilibria in the N-body problem, J. Diff. Equa., 214 (2005), 256-298.
doi: 10.1016/j.jde.2004.09.006.
|
| [10] |
R. Moeckel, Linear stability analysis of some symmetrical classes of relative equilibria, Hamiltonian Dynamical Systems, (Cincinnati, OH, 1992), 291-317, IMA Vol. Math Appl., 63, Springer, New York, 1995.
doi: 10.1007/978-1-4613-8448-9_20.
|
| [11] |
G. E. Roberts, Linear stability in the $1+N$-gon relative equilibrium, http://mathcs.holycross.edu/~groberts/Papers/HAMSYS-98.pdf.
doi: 10.1142/9789812792099_0018.
|
| [12] |
R. J. Vanderbei and E. Kolemen, Linear stability of ring systems, The Astronomical Journal, 133 (2007), 656-664.
doi: 10.1086/510457.
|