We analyse a nonlinear stochastic partial differential equation that corresponds to a viscous shallow water equation (of the Camassa–Holm type) perturbed by a convective, position-dependent noise term. We establish the existence of weak solutions in $ H^m $ ($ m\in\mathbb{N} $) using Galerkin approximations and the stochastic compactness method. We derive a series of a priori estimates that combine a model-specific energy law with non-standard regularity estimates. We make systematic use of a stochastic Gronwall inequality and also stopping time techniques. The proof of convergence to a solution argues via tightness of the laws of the Galerkin solutions, and Skorokhod–Jakubowski a.s. representations of random variables in quasi-Polish spaces. The spatially dependent noise function constitutes a complication throughout the analysis, repeatedly giving rise to nonlinear terms that "balance" the martingale part of the equation against the second-order Stratonovich-to-Itô correction term. Finally, via pathwise uniqueness, we conclude that the constructed solutions are probabilistically strong. The uniqueness proof is based on a finite-dimensional Itô formula and a DiPerna–Lions type regularisation procedure, where the regularisation errors are controlled by first and second order commutators.
Citation: |
[1] | S. Albeverio, Z. Brzeźniak and A. Daletskii, Stochastic Camassa–Holm equation with convection type noise, J. Differential Equations, 276 (2021), 404-432. doi: 10.1016/j.jde.2020.12.013. |
[2] | D. Alonso-Orán, C. Rohde and H. Tang, A local-in-time theory for singular sdes with applications to fluid models with transport noise, Journal of Nonlinear Science, 31 (2021), 98. doi: 10.1007/s00332-021-09755-9. |
[3] | T. M. Bendall, C. J. Cotter and D. D. Holm, Perspectives on the formation of peakons in the stochastic Camassa–Holm equation, Proc. A., 477 (2021), Paper No. 20210224, 18 pp. doi: 10.1098/rspa.2021.0224. |
[4] | A. Bensoussan, Stochastic Navier–Stokes equations, Acta Applicandae Mathematica, 38 (1995), 267-304. doi: 10.1007/BF00996149. |
[5] | A. Boritchev, Decaying turbulence in the generalised Burgers equation, Arch. Ration. Mech. Anal., 214 (2014), 331-357. doi: 10.1007/s00205-014-0766-5. |
[6] | D. Breit and M. Hofmanová, Stochastic Navier–Stokes equations for compressible fluids, Indiana Univ. Math. J., 65 (2016), 1183-1250. doi: 10.1512/iumj.2016.65.5832. |
[7] | A. Bressan and A. Constantin, Global conservative solutions of the Camassa–Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239. doi: 10.1007/s00205-006-0010-z. |
[8] | A. Bressan and A. Constantin, Global dissipative solutions of the Camassa–Holm equation, Anal. Appl. (Singap.), 5 (2007), 1-27. doi: 10.1142/S0219530507000857. |
[9] | Z. Brzeźniak and E. Motyl, Existence of a martingale solution of the stochastic Navier–Stokes equations in unbounded 2D and 3D domains, J. Differential Equations, 254 (2013), 1627-1685. doi: 10.1016/j.jde.2012.10.009. |
[10] | Z. Brzeźniak and M. Ondreját, Weak solutions to stochastic wave equations with values in Riemannian manifolds, Comm. Partial Differential Equations, 36 (2011), 1624-1653. doi: 10.1080/03605302.2011.574243. |
[11] | Z. Brzeźniak and M. Ondreját, Stochastic geometric wave equations with values in compact Riemannian homogeneous spaces, Ann. Probab., 41 (2013), 1938-1977. doi: 10.1214/11-AOP690. |
[12] | Z. Brzeźniak, M. Ondreját and J. Seidler, Invariant measures for stochastic nonlinear beam and wave equations, J. Differential Equations, 260 (2016), 4157-4179. doi: 10.1016/j.jde.2015.11.007. |
[13] | R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661. |
[14] | P.-L. Chow, Stochastic Partial Differential Equations, Advances in Applied Mathematics. CRC Press, Boca Raton, FL, second edition, 2015. |
[15] | Y. Chen, J. Duan and H. Gao, Global well-posedness of the stochastic Camassa–Holm equation, Commun. Math. Sci., 19 (2021), 607-627. doi: 10.4310/CMS.2021.v19.n3.a2. |
[16] | Y. Chen and H. Gao, Well-posedness and large deviations of the stochastic modified Camassa–Holm equation, Potential Anal., 45 (2016), 331-354. doi: 10.1007/s11118-016-9548-z. |
[17] | Y. Chen, H. Gao and B. Guo, Well-posedness for stochastic Camassa–Holm equation, J. Differential Equations, 253 (2012), 2353-2379. doi: 10.1016/j.jde.2012.06.023. |
[18] | Y. Chen and L. Ran, The effect of a noise on the stochastic modified Camassa–Holm equation, J. Math. Phys., 61 (2020), 091504, 16 pp. doi: 10.1063/1.5116129. |
[19] | G. M. Coclite, H. Holden and K. H. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal., 37 (2005), 1044-1069 (electronic). doi: 10.1137/040616711. |
[20] | A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1998), 303-328, http://www.numdam.org/item/?id=ASNSP_1998_4_26_2_303_0. |
[21] | A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243. doi: 10.1007/BF02392586. |
[22] | D. Crisan and D. D. Holm, Wave breaking for the stochastic Camassa–Holm equation, Phys. D, 376/377 (2018), 138-143. doi: 10.1016/j.physd.2018.02.004. |
[23] | A. Debussche, N. Glatt-Holtz and R. Temam, Local martingale and pathwise solutions for an abstract fluids model, Phys. D, 240 (2011), 1123-1144. doi: 10.1016/j.physd.2011.03.009. |
[24] | A. Debussche, M. Hofmanová and J. Vovelle, Degenerate parabolic stochastic partial differential equations: Quasilinear case, Ann. Probab., 44 (2016), 1916-1955. doi: 10.1214/15-AOP1013. |
[25] | R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511-547. doi: 10.1007/BF01393835. |
[26] | R. Engelking, General Topology, Heldermann Verlag, Berlin, second edition, 1989. |
[27] | F. Flandoli and D. Gątarek, Martingale and stationary solutions for stochastic Navier–Stokes equations, Probab. Theory Related Fields, 102 (1995), 367-391. doi: 10.1007/BF01192467. |
[28] | B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/82), 47-66. doi: 10.1016/0167-2789(81)90004-X. |
[29] | N. E. Glatt-Holtz and V. C. Vicol, Local and global existence of smooth solutions for the stochastic Euler equations with multiplicative noise, Ann. Probab., 42 (2014), 80-145. doi: 10.1214/12-AOP773. |
[30] | I. Gyöngy and N. Krylov, Existence of strong solutions for Itô's stochastic equations via approximations, Probab. Theory Related Fields, 105 (1996), 143-158. doi: 10.1007/BF01203833. |
[31] | H. Holden and X. Raynaud, Global conservative solutions of the Camassa–Holm equation—a Lagrangian point of view, Comm. Partial Differential Equations, 32 (2007), 1511-1549. doi: 10.1080/03605300601088674. |
[32] | Z. Huang, H. Tang and Z. Liu, Random attractor for a stochastic viscous coupled Camassa–Holm equation, J. Inequal. Appl., 2013 (2013), 201, 30 pp. doi: 10.1186/1029-242X-2013-201. |
[33] | H. Holden, K. H. Karlsen and P. H. C. Pang, The Hunter–Saxton equation with noise, J. Differential Equations, 270 (2021), 725-786. doi: 10.1016/j.jde.2020.07.031. |
[34] | D. D. Holm, Variational principles for stochastic fluid dynamics, Proc. A., 471 (2015), 20140963, 19 pp. doi: 10.1098/rspa.2014.0963. |
[35] | A. Jakubowski, The almost sure Skorokhod representation for subsequences in nonmetric spaces, Theory Probab. Appl., 42 (1997), 167-174. doi: 10.4213/tvp1769. |
[36] | A. S. Kechris, Classical Descriptive Set Theory, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4190-4. |
[37] | W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Universitext. Springer, 2015. doi: 10.1007/978-3-319-22354-4. |
[38] | W. Lv, P. He and Q. Wang, Well-posedness and blow-up solution for the stochastic Dullin–Gottwald–Holm equation, J. Math. Phys., 60 (2019), 083513, 10 pp. doi: 10.1063/1.5082367. |
[39] | M. Ondreját, Stochastic nonlinear wave equations in local Sobolev spaces, Electron. J. Probab., 15 (2010), 1041-1091. doi: 10.1214/EJP.v15-789. |
[40] | S. Punshon-Smith and S. Smith, On the Boltzmann equation with stochastic kinetic transport: Global existence of renormalized martingale solutions, Arch. Ration. Mech. Anal., 229 (2018), 627-708. doi: 10.1007/s00205-018-1225-5. |
[41] | D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer, Berlin, third edition, 1999. doi: 10.1007/978-3-662-06400-9. |
[42] | C. Rohde and H. Tang, On the stochastic Dullin–Gottwald–Holm equation: Global existence and wave-breaking phenomena, NoDEA Nonlinear Differential Equations Appl., 28 (2021), 34 pp. doi: 10.1007/s00030-020-00661-9. |
[43] | C. Rohde and H. Tang, On a stochastic Camassa–Holm type equation with higher order nonlinearities, Journal of Dynamics and Differential Equations, 33 (2021), 1823-1852. doi: 10.1007/s10884-020-09872-1. |
[44] | M. Scheutzow, A stochastic Gronwall lemma, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16 (2013), 1350019, 4 pp. doi: 10.1142/S0219025713500197. |
[45] | J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96. doi: 10.1007/BF01762360. |
[46] | R. Situ, Theory of Stochastic Differential Equations with Jumps and Applications, Springer, New York, 2005. |
[47] | H. Tang, On the pathwise solutions to the Camassa–Holm equation with multiplicative noise, SIAM J. Math. Anal., 50 (2018), 1322-1366. doi: 10.1137/16M1080537. |
[48] | H. Tang, Noise effects on dependence on initial data and blow-up for stochastic Euler–Poincaré equations, arXiv: 2002.08719v2, 2020. |
[49] | R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis, SIAM, Philadelphia, PA, second edition, 1995. doi: 10.1137/1.9781611970050. |
[50] | L. Xie and X. Zhang, Ergodicity of stochastic differential equations with jumps and singular coefficients, Ann. Inst. Henri Poincaré Probab. Stat., 56 (2020), 175-229. doi: 10.1214/19-AIHP959. |
[51] | Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433. doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5. |
[52] | L. Zhang, Local and global pathwise solutions for a stochastically perturbed nonlinear dispersive PDE, Stochastic Process. Appl., 130 (2020), 6319-6363. doi: 10.1016/j.spa.2020.05.013. |
[53] | L. Zhang, Effect of random noise on solutions to the modified two-component Camassa–Holm system on $\Bbb{T}^d$, arXiv: 2107.09603, 2021. |