We analyse a nonlinear stochastic partial differential equation that corresponds to a viscous shallow water equation (of the Camassa–Holm type) perturbed by a convective, position-dependent noise term. We establish the existence of weak solutions in $ H^m $ ($ m\in\mathbb{N} $) using Galerkin approximations and the stochastic compactness method. We derive a series of a priori estimates that combine a model-specific energy law with non-standard regularity estimates. We make systematic use of a stochastic Gronwall inequality and also stopping time techniques. The proof of convergence to a solution argues via tightness of the laws of the Galerkin solutions, and Skorokhod–Jakubowski a.s. representations of random variables in quasi-Polish spaces. The spatially dependent noise function constitutes a complication throughout the analysis, repeatedly giving rise to nonlinear terms that "balance" the martingale part of the equation against the second-order Stratonovich-to-Itô correction term. Finally, via pathwise uniqueness, we conclude that the constructed solutions are probabilistically strong. The uniqueness proof is based on a finite-dimensional Itô formula and a DiPerna–Lions type regularisation procedure, where the regularisation errors are controlled by first and second order commutators.
Citation: |
[1] |
S. Albeverio, Z. Brzeźniak and A. Daletskii, Stochastic Camassa–Holm equation with convection type noise, J. Differential Equations, 276 (2021), 404-432.
doi: 10.1016/j.jde.2020.12.013.![]() ![]() ![]() |
[2] |
D. Alonso-Orán, C. Rohde and H. Tang, A local-in-time theory for singular sdes with applications to fluid models with transport noise, Journal of Nonlinear Science, 31 (2021), 98.
doi: 10.1007/s00332-021-09755-9.![]() ![]() ![]() |
[3] |
T. M. Bendall, C. J. Cotter and D. D. Holm, Perspectives on the formation of peakons in the stochastic Camassa–Holm equation, Proc. A., 477 (2021), Paper No. 20210224, 18 pp.
doi: 10.1098/rspa.2021.0224.![]() ![]() ![]() |
[4] |
A. Bensoussan, Stochastic Navier–Stokes equations, Acta Applicandae Mathematica, 38 (1995), 267-304.
doi: 10.1007/BF00996149.![]() ![]() ![]() |
[5] |
A. Boritchev, Decaying turbulence in the generalised Burgers equation, Arch. Ration. Mech. Anal., 214 (2014), 331-357.
doi: 10.1007/s00205-014-0766-5.![]() ![]() ![]() |
[6] |
D. Breit and M. Hofmanová, Stochastic Navier–Stokes equations for compressible fluids, Indiana Univ. Math. J., 65 (2016), 1183-1250.
doi: 10.1512/iumj.2016.65.5832.![]() ![]() ![]() |
[7] |
A. Bressan and A. Constantin, Global conservative solutions of the Camassa–Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.
doi: 10.1007/s00205-006-0010-z.![]() ![]() ![]() |
[8] |
A. Bressan and A. Constantin, Global dissipative solutions of the Camassa–Holm equation, Anal. Appl. (Singap.), 5 (2007), 1-27.
doi: 10.1142/S0219530507000857.![]() ![]() ![]() |
[9] |
Z. Brzeźniak and E. Motyl, Existence of a martingale solution of the stochastic Navier–Stokes equations in unbounded 2D and 3D domains, J. Differential Equations, 254 (2013), 1627-1685.
doi: 10.1016/j.jde.2012.10.009.![]() ![]() ![]() |
[10] |
Z. Brzeźniak and M. Ondreját, Weak solutions to stochastic wave equations with values in Riemannian manifolds, Comm. Partial Differential Equations, 36 (2011), 1624-1653.
doi: 10.1080/03605302.2011.574243.![]() ![]() ![]() |
[11] |
Z. Brzeźniak and M. Ondreját, Stochastic geometric wave equations with values in compact Riemannian homogeneous spaces, Ann. Probab., 41 (2013), 1938-1977.
doi: 10.1214/11-AOP690.![]() ![]() ![]() |
[12] |
Z. Brzeźniak, M. Ondreját and J. Seidler, Invariant measures for stochastic nonlinear beam and wave equations, J. Differential Equations, 260 (2016), 4157-4179.
doi: 10.1016/j.jde.2015.11.007.![]() ![]() ![]() |
[13] |
R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661.![]() ![]() ![]() |
[14] |
P.-L. Chow, Stochastic Partial Differential Equations, Advances in Applied Mathematics. CRC Press, Boca Raton, FL, second edition, 2015.
![]() ![]() |
[15] |
Y. Chen, J. Duan and H. Gao, Global well-posedness of the stochastic Camassa–Holm equation, Commun. Math. Sci., 19 (2021), 607-627.
doi: 10.4310/CMS.2021.v19.n3.a2.![]() ![]() ![]() |
[16] |
Y. Chen and H. Gao, Well-posedness and large deviations of the stochastic modified Camassa–Holm equation, Potential Anal., 45 (2016), 331-354.
doi: 10.1007/s11118-016-9548-z.![]() ![]() ![]() |
[17] |
Y. Chen, H. Gao and B. Guo, Well-posedness for stochastic Camassa–Holm equation, J. Differential Equations, 253 (2012), 2353-2379.
doi: 10.1016/j.jde.2012.06.023.![]() ![]() ![]() |
[18] |
Y. Chen and L. Ran, The effect of a noise on the stochastic modified Camassa–Holm equation, J. Math. Phys., 61 (2020), 091504, 16 pp.
doi: 10.1063/1.5116129.![]() ![]() ![]() |
[19] |
G. M. Coclite, H. Holden and K. H. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal., 37 (2005), 1044-1069 (electronic).
doi: 10.1137/040616711.![]() ![]() ![]() |
[20] |
A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1998), 303-328, http://www.numdam.org/item/?id=ASNSP_1998_4_26_2_303_0.
![]() ![]() |
[21] |
A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.
doi: 10.1007/BF02392586.![]() ![]() ![]() |
[22] |
D. Crisan and D. D. Holm, Wave breaking for the stochastic Camassa–Holm equation, Phys. D, 376/377 (2018), 138-143.
doi: 10.1016/j.physd.2018.02.004.![]() ![]() ![]() |
[23] |
A. Debussche, N. Glatt-Holtz and R. Temam, Local martingale and pathwise solutions for an abstract fluids model, Phys. D, 240 (2011), 1123-1144.
doi: 10.1016/j.physd.2011.03.009.![]() ![]() ![]() |
[24] |
A. Debussche, M. Hofmanová and J. Vovelle, Degenerate parabolic stochastic partial differential equations: Quasilinear case, Ann. Probab., 44 (2016), 1916-1955.
doi: 10.1214/15-AOP1013.![]() ![]() ![]() |
[25] |
R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511-547.
doi: 10.1007/BF01393835.![]() ![]() ![]() |
[26] |
R. Engelking, General Topology, Heldermann Verlag, Berlin, second edition, 1989.
![]() ![]() |
[27] |
F. Flandoli and D. Gątarek, Martingale and stationary solutions for stochastic Navier–Stokes equations, Probab. Theory Related Fields, 102 (1995), 367-391.
doi: 10.1007/BF01192467.![]() ![]() ![]() |
[28] |
B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/82), 47-66.
doi: 10.1016/0167-2789(81)90004-X.![]() ![]() ![]() |
[29] |
N. E. Glatt-Holtz and V. C. Vicol, Local and global existence of smooth solutions for the stochastic Euler equations with multiplicative noise, Ann. Probab., 42 (2014), 80-145.
doi: 10.1214/12-AOP773.![]() ![]() ![]() |
[30] |
I. Gyöngy and N. Krylov, Existence of strong solutions for Itô's stochastic equations via approximations, Probab. Theory Related Fields, 105 (1996), 143-158.
doi: 10.1007/BF01203833.![]() ![]() ![]() |
[31] |
H. Holden and X. Raynaud, Global conservative solutions of the Camassa–Holm equation—a Lagrangian point of view, Comm. Partial Differential Equations, 32 (2007), 1511-1549.
doi: 10.1080/03605300601088674.![]() ![]() ![]() |
[32] |
Z. Huang, H. Tang and Z. Liu, Random attractor for a stochastic viscous coupled Camassa–Holm equation, J. Inequal. Appl., 2013 (2013), 201, 30 pp.
doi: 10.1186/1029-242X-2013-201.![]() ![]() ![]() |
[33] |
H. Holden, K. H. Karlsen and P. H. C. Pang, The Hunter–Saxton equation with noise, J. Differential Equations, 270 (2021), 725-786.
doi: 10.1016/j.jde.2020.07.031.![]() ![]() ![]() |
[34] |
D. D. Holm, Variational principles for stochastic fluid dynamics, Proc. A., 471 (2015), 20140963, 19 pp.
doi: 10.1098/rspa.2014.0963.![]() ![]() ![]() |
[35] |
A. Jakubowski, The almost sure Skorokhod representation for subsequences in nonmetric spaces, Theory Probab. Appl., 42 (1997), 167-174.
doi: 10.4213/tvp1769.![]() ![]() ![]() |
[36] |
A. S. Kechris, Classical Descriptive Set Theory, Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4190-4.![]() ![]() ![]() |
[37] |
W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Universitext. Springer, 2015.
doi: 10.1007/978-3-319-22354-4.![]() ![]() ![]() |
[38] |
W. Lv, P. He and Q. Wang, Well-posedness and blow-up solution for the stochastic Dullin–Gottwald–Holm equation, J. Math. Phys., 60 (2019), 083513, 10 pp.
doi: 10.1063/1.5082367.![]() ![]() ![]() |
[39] |
M. Ondreját, Stochastic nonlinear wave equations in local Sobolev spaces, Electron. J. Probab., 15 (2010), 1041-1091.
doi: 10.1214/EJP.v15-789.![]() ![]() ![]() |
[40] |
S. Punshon-Smith and S. Smith, On the Boltzmann equation with stochastic kinetic transport: Global existence of renormalized martingale solutions, Arch. Ration. Mech. Anal., 229 (2018), 627-708.
doi: 10.1007/s00205-018-1225-5.![]() ![]() ![]() |
[41] |
D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer, Berlin, third edition, 1999.
doi: 10.1007/978-3-662-06400-9.![]() ![]() ![]() |
[42] |
C. Rohde and H. Tang, On the stochastic Dullin–Gottwald–Holm equation: Global existence and wave-breaking phenomena, NoDEA Nonlinear Differential Equations Appl., 28 (2021), 34 pp.
doi: 10.1007/s00030-020-00661-9.![]() ![]() ![]() |
[43] |
C. Rohde and H. Tang, On a stochastic Camassa–Holm type equation with higher order nonlinearities, Journal of Dynamics and Differential Equations, 33 (2021), 1823-1852.
doi: 10.1007/s10884-020-09872-1.![]() ![]() ![]() |
[44] |
M. Scheutzow, A stochastic Gronwall lemma, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16 (2013), 1350019, 4 pp.
doi: 10.1142/S0219025713500197.![]() ![]() ![]() |
[45] |
J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360.![]() ![]() ![]() |
[46] |
R. Situ, Theory of Stochastic Differential Equations with Jumps and Applications, Springer, New York, 2005.
![]() ![]() |
[47] |
H. Tang, On the pathwise solutions to the Camassa–Holm equation with multiplicative noise, SIAM J. Math. Anal., 50 (2018), 1322-1366.
doi: 10.1137/16M1080537.![]() ![]() ![]() |
[48] |
H. Tang, Noise effects on dependence on initial data and blow-up for stochastic Euler–Poincaré equations, arXiv: 2002.08719v2, 2020.
![]() |
[49] |
R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis, SIAM, Philadelphia, PA, second edition, 1995.
doi: 10.1137/1.9781611970050.![]() ![]() ![]() |
[50] |
L. Xie and X. Zhang, Ergodicity of stochastic differential equations with jumps and singular coefficients, Ann. Inst. Henri Poincaré Probab. Stat., 56 (2020), 175-229.
doi: 10.1214/19-AIHP959.![]() ![]() ![]() |
[51] |
Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.
doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.![]() ![]() ![]() |
[52] |
L. Zhang, Local and global pathwise solutions for a stochastically perturbed nonlinear dispersive PDE, Stochastic Process. Appl., 130 (2020), 6319-6363.
doi: 10.1016/j.spa.2020.05.013.![]() ![]() ![]() |
[53] |
L. Zhang, Effect of random noise on solutions to the modified two-component Camassa–Holm system on $\Bbb{T}^d$, arXiv: 2107.09603, 2021.
![]() |