\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A 3D-Schrödinger operator under magnetic steps with semiclassical applications

  • *Corresponding author: Emanuela L. Giacomelli

    *Corresponding author: Emanuela L. Giacomelli
Abstract / Introduction Full Text(HTML) Figure(7) Related Papers Cited by
  • We define a Schrödinger operator on the half-space with a discontinuous magnetic field having a piecewise-constant strength and a uniform direction. Motivated by applications in the theory of superconductivity, we study the infimum of the spectrum of the operator. We give sufficient conditions on the strength and the direction of the magnetic field such that the aforementioned infimum is an eigenvalue of a reduced model operator on the half-plane. We use the Schrödinger operator on the half-space to study a new semiclassical problem in bounded domains of the space, considering a magnetic Neumann Laplacian with a piecewise-constant magnetic field. We then make precise the localization of the semiclassical ground state near specific points at the discontinuity jump of the magnetic field.

    Mathematics Subject Classification: Primary: 35J10; Secondary: 35P15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Let $ \alpha \in (0,\pi) $, $ \gamma\in[0,\pi/2] $ and $ a\in[-1,1)\setminus\{0\} $. The magnetic field $ {\mathbf{B}}_{ \alpha,\gamma,a} $ in $ \mathbb{R}_+^3 $ can have different directions in the two regions $ \mathcal{D}_\alpha^1 $ and $ \mathcal{D}_\alpha^2 $, according to the sign of $ a $. The strength of the magnetic field is $ \mathsf s_{ \alpha,a} = 1 $ in $ \mathcal D^1_\alpha $ and $ \mathsf s_{ \alpha,a} = a $ in $ \mathcal D^2_\alpha $. The transition of the strength occurs at the plane $ P_\alpha $ of equation $ x_1\sin\alpha-x_2\cos\alpha = 0 $, referred to as the discontinuity plane. The angle $ \gamma $ (modulo $ -\pi $) represents the angle that $ {\mathbf{B}}_{ \alpha,\gamma,a} $ makes with the $ x_3 $-axis

    Figure 2.  For the triplets $ (\alpha,\gamma,a) $ in the colored region, $ \lambda_{\alpha, \gamma,a} $ is an eigenvalue of an operator $ \mathcal L_{\underline {\mathbf{A}}_{\alpha,\gamma,a}}+V_{\underline{{\mathbf{B}}}_{\alpha,\gamma,a},\tau_*} $

    Figure 3.  Illustration of the domain $ \Omega $, the discontinuity surface $ S $ (shaded), and the discontinuity edge $ \Gamma: = \partial S $. The magnetic field $ {\mathbf{B}} $ is tangent to $ S $ and its strength exhibits a jump of discontinuity at $ S $

    Figure 4.  For $ \alpha\in(0,\pi) $, $ \gamma\in(0,\pi/2] $ and $ a\in[-1,0) $, the set $ \Upsilon_{\alpha, \gamma, a,\tau} $ is drawn in blue. For $ \tau\geq0 $ (at right), $ \Upsilon_{\alpha, \gamma,a,\tau} = \Upsilon^{(1)}_{\alpha, \gamma, \tau}\cup\Upsilon^{(2)}_{\alpha, \gamma, a,\tau} $. For $ \tau<0 $ (at left), $ \Upsilon_{\alpha, \gamma, a,\tau} = l_\alpha $

    Figure 5.  For $ \alpha\in(0,\pi) $, $ \gamma\in(0,\pi/2] $ and $ a\in(0,1) $, the set $ \Upsilon_{\alpha, \gamma, a,\tau} $ is drawn in blue. For $ \tau\geq0 $ (at right), $ \Upsilon_{\alpha, \gamma, a,\tau} = \Upsilon^{(1)}_{\alpha, \gamma, \tau} $. For $ \tau<0 $ (at left), $ \Upsilon_{\alpha, \gamma, a,\tau} = \Upsilon^{(2)}_{\alpha, \gamma, a,\tau} $

    Figure 6.  $ \mathrm{dist}(\mathrm{supp}\chi_1 u,\Upsilon^{(1)}_{\alpha,\gamma,\tau})\geq d_1 $ and $ \mathrm{dist}(\mathrm{supp}\chi_3 u,\Upsilon^{(2)}_{\alpha,\gamma,a,\tau})\geq d_2 $

    Figure 7.  An illustration of the coordinates-transformation $ \Phi = \Phi_2\circ \Phi_1 $ as a composition of the local diffeomorphisms $ \Phi_1 $ and $ \Phi_2 $, as defined in Section 5.1.1. The shaded regions respectively represent (from the left to the right) the surfaces $ S $, $ \breve{S} $ and $ P_{\alpha_0} $ near $ (0,0,0) $

  • [1] S. AgmonLectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrödinger Operations. (MN-29), Princeton University Press, 2016. 
    [2] W. Assaad, The breakdown of superconductivity in the presence of magnetic steps, Commun. Contemp. Math., 23 (2021), Paper No. 2050005, 53 pp. doi: 10.1142/S0219199720500054.
    [3] W. Assaad, Magnetic steps on the threshold of the normal state, J. Math. Phys., 61 (2020), 101508.  doi: 10.1063/5.0012725.
    [4] W. Assaad, B. Helffer and A. Kachmar, Semi-classical eigenvalue estimates under magnetic steps, to appear, Anal. PDE, arXiv: 2108.03964.
    [5] W. Assaad and A. Kachmar, Lowest energy band function for magnetic steps, J. Spectr. Theory, 12 (2022), 813-833.  doi: 10.4171/JST/419.
    [6] W. AssaadA. Kachmar and M. Persson-Sundqvist, The distribution of superconductivity near a magnetic barrier, Comm. Math. Phys., 366 (2019), 269-332.  doi: 10.1007/s00220-019-03284-z.
    [7] V. Bonnaillie, Analyse Mathématique de la Supraconductivité dans un Domaine à coins: Méthodes Semi-Classiques et Numériques, PhD thesis, Université Paris Sud-Paris XI, 2003.
    [8] V. Bonnaillie-Noël, Harmonic oscillators with Neumann condition on the half-line, Commun. Pure Appl. Math, 11 (2012), 2221-2237.  doi: 10.3934/cpaa.2012.11.2221.
    [9] V. Bonnaillie-Noël, M. Dauge and N. Popoff, Ground State Energy of the Magnetic Laplacian on General Three-Dimensional Corner Domains, Mémoires de la SMF, volume 145, 2015. doi: 10.24033/msmf.453.
    [10] V. Bonnaillie-NoëlM. DaugeN. Popoff and N. Raymond, Discrete spectrum of a model Schrödinger operator on the half-plane with Neumann conditions, ZAMP, 63 (2012), 203-231.  doi: 10.1007/s00033-011-0163-y.
    [11] V. Bonnaillie-Noël and S. Fournais, Superconductivity in domains with corners, Rev. Math. Phys., 19 (2007), 607-637.  doi: 10.1142/S0129055X07003061.
    [12] M. Correggi and E. L. Giacomelli, Surface superconductivity in presence of corners, Rev. Math. Phys., 29 (2017), 1750005, 24 pp. doi: 10.1142/S0129055X17500052.
    [13] M. Correggi and E. L. Giacomelli, Effects of corners in surface superconductivity, Calc. Var. Var. Partial Differential Equations, 60 (2021), Paper No. 236, 57 pp. doi: 10.1007/s00526-021-02101-7.
    [14] M. Correggi and E. L. Giacomelli, Almost flat angles in surface superconductivity, Nonlinearity, 34 (2021), 7633-7661.  doi: 10.1088/1361-6544/ac24e0.
    [15] M. Correggi and N. Rougerie, On the Ginzburg-Landau functional in the surface superconductivity regime, Comm. Math. Phys, 332 (2014), 1297-1343; erratum Comm. Math. Phys., 338 (2015), 1451-1452. doi: 10.1007/s00220-015-2370-4.
    [16] M. Correggi and N. Rougerie, Boundary behavior of the Ginzburg-Landau order parameter in the surface superconductivity regime, Arch. Rational Mech. Anal., 219 (2016), 553-606.  doi: 10.1007/s00205-015-0900-z.
    [17] H. L. Cycon, R. G. Froese, W. Kirsch and B. Simon, Schrödinger Operators: With Application to Quantum Mechanics and Global Geometry, Springer, 2009.
    [18] P. ExnerV. Lotoreichik and A. Pérez-Obiol, On the bound states of magnetic Laplacians on wedges, Rep. Math. Phys., 82 (2018), 161-185.  doi: 10.1016/S0034-4877(18)30084-3.
    [19] S. Fournais and B. Helffer, On the third critical field in Ginzburg–Landau theory, Commun. Math. Phys., 266 (2006), 153-196.  doi: 10.1007/s00220-006-0006-4.
    [20] S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, volume 77., Springer Science & Business Media, 2010. doi: 10.1007/978-0-8176-4797-1.
    [21] S. FournaisB. Helffer and A. Kachmar, Tunneling effect induced by a curved magnetic edge, The Physics and Mathematics of Elliott Lieb, 1 (2022), 315-350.  doi: 10.4171/90-1/14.
    [22] S. FournaisA. Kachmar and M. Persson, The ground state energy of the three dimensional Ginzburg-Landau functional. Part Ⅱ: Surface regime, J. Math, Pures Appl., 99 (2013), 343-374.  doi: 10.1016/j.matpur.2012.09.002.
    [23] E. L. Giacomelli, On the magnetic laplacian with a piecewise constant magnetic field in $\mathbb{R}^3_+$, preprint, 2022, arXiv: 2207.13627.
    [24] T. Giorgi and D. Phillips, The breakdown of superconductivity due to strong fields for the Ginzburg–Landau model, SIAM J. Math. Anal., 30 (1999), 341-359.  doi: 10.1137/S0036141097323163.
    [25] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Elsevier, Academic Press, Amsterdam, 2015.
    [26] B. Helffer and A. Kachmar, The density of superconductivity in domains with corners, Lett. Math. Phys., 108 (2018), 2169-2187.  doi: 10.1007/s11005-018-1070-3.
    [27] B. Helffer and A. Morame, Magnetic bottles in connection with superconductivity, J. Funct. Anal., 185 (2001), 604-680.  doi: 10.1006/jfan.2001.3773.
    [28] B. Helffer, and A. Morame, Magnetic bottles for the Neumann problem: Curvature effects in the case of dimension 3 (general case), Ann. Sci. Éc. Norm. Supér., 37 (2004), 105-170. doi: 10.1016/j.ansens.2003.04.003.
    [29] P. D. HislopN. PopoffN. Raymond and M. Sundqvist, Band functions in the presence of magnetic steps, Math. Models Methods Appl. Sci., 26 (2016), 161-184.  doi: 10.1142/S0218202516500056.
    [30] P. D. Hislop and E. Soccorsi, Edge states induced by Iwatsuka Hamiltonians with positive magnetic fields, J. Math. Anal. Appl., 422 (2015), 594-624.  doi: 10.1016/j.jmaa.2014.08.056.
    [31] H. Leinfelder, Gauge invariance of Schrödinger operators and related spectral properties, J. Operator Theory, 9 (1983), 163-179. 
    [32] K. Lu and X.-B. Pan, Eigenvalue problems of Ginzburg-Landau operator in bounded domains, J. Math. Phys., 40 (1999), 2647-2670.  doi: 10.1063/1.532721.
    [33] K. Lu and X.-B. Pan, Surface nucleation of superconductivity in 3-dimension, J. Differential Equations, 168 (2000), 386-452.  doi: 10.1006/jdeq.2000.3892.
    [34] A. Morame and F. Truc, Remarks on the spectrum of the Neumann problem with magnetic field in the half-space, J. Math. Phys., 46 (2005). doi: 10.1063/1.1827922.
    [35] X.-B. Pan, Upper critical field for superconductors with edges and corners, Calc. Var. Partial Differential Equations, 14 (2002), 447-482.  doi: 10.1007/s005260100111.
    [36] X.-B. Pan, Surface superconductivity in $3$ dimensions, Transactions of the American Mathematical Society, 356 (2004), 3899-3937.  doi: 10.1090/S0002-9947-04-03530-5.
    [37] A. Persson, Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator, Math. Scand., 8 (1960), 143-153.  doi: 10.7146/math.scand.a-10602.
    [38] N. Popoff, The Schrödinger operator on an infinite wedge with a tangent magnetic field, J. Math. Phys., 54 (2013). doi: 10.1063/1.4801784.
    [39] N. Popoff, The model magnetic Laplacian on wedges, J. Spectr. Theory, 5 (2015), 617-661.  doi: 10.4171/JST/109.
    [40] N. Popoff and N. Raymond, When the $3D$ magnetical Laplacian meets a curved edge in the semiclassical limit, Siam J. Math. Anal., 45 (2013), 2354-2395.  doi: 10.1137/130906003.
    [41] N. Raymond, Sharp asymptotics for the Neumann Laplacian with variable magnetic field: Case of dimension 2, Ann. Henri Poincaré, 10 (2009), 95-122. doi: 10.1007/s00023-009-0405-0.
    [42] N. Raymond, From the Laplacian with variable magnetic field to the electric Laplacian in the semiclassical limit, J. Analysis & PDE, 6 (2013), 1289-1326.  doi: 10.2140/apde.2013.6.1289.
    [43] N. Raymond, Bound States of the Magnetic Schrödinger Operator, EMS Tracts in Mathematics, volume 27, 2017. doi: 10.4171/169.
    [44] M. Reed and  B. SimonMethods of Modern Mathematical Physics Ⅰ: Functional Analysis, Academic Press, New York, 1972. 
    [45] D. Saint James and P. G. de Gennes, Onset of superconductivity in decreasing fields, Phys. Lett., 7 (1963), 306-308.  doi: 10.1016/0031-9163(63)90047-7.
    [46] E. Sandier and S. Serfaty, Vortices in the Magnetic Ginzburg–Landau Model, Progress in Nonlinear Partial Differential Equations and their Applications, Birkhäuser-Boston, 2007. doi: 10.1007/978-0-8176-4550-2.
  • 加载中

Figures(7)

SHARE

Article Metrics

HTML views(2863) PDF downloads(147) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return