We consider the following prescribed curvature problem involving polyharmonic operator on $ \mathbb{S}^{N}: $
$ \begin{align*} D^{m}u = K(|y|)u^{m^{*}-1}, \quad u > 0 \quad \hbox{in} \quad \mathbb{S}^{N}, \quad u \in H^{m}(\mathbb{S}^{N}), \end{align*} $
where $ K(|y|) $ is a positive function, $ m^{*} = \frac{2N}{N-2m} $ is the critical exponent of Sobolev embedding, $ N>6m. $ $ D^m $ is the $ 2m $ order differential operator given by
$ D^m = \prod\limits_{l = 1}^m (-\Delta_g+\frac{1}{4}(N-2l)(N+2l-2)), $
where $ \Delta_g $ is the Laplace-Beltrami operator on $ \mathbb{S}^N, $ and $ \mathbb{S}^N $ is the unit sphere with Riemann metric $ g. $ By applying the non-degenerate result of positive multi-bubbling solutions constructed in [
Citation: |
[1] |
A. Ambrosetti, J. Garcia Azorero and I. Peral, Perturbation of $-\Delta u - u^{\frac{N+2}{N-2}} = 0$, the scalar curvature problem in $\mathbb{R}^{N}$ and related topic, J. Funct. Anal., 165 (1999), 117-149.
doi: 10.1006/jfan.1999.3390.![]() ![]() ![]() |
[2] |
T. Bartsch, M. Schneider and T. Weth, Multiple solutions of a critical polyharmonic equation, J. Reine Angew. Math., 571 (2004), 131-143.
doi: 10.1515/crll.2004.037.![]() ![]() ![]() |
[3] |
T. Bartsch, T. Weth and M. Willem, A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator, Calc. Var. Partial Differential Equations, 18 (2003), 253-268.
doi: 10.1007/s00526-003-0198-9.![]() ![]() ![]() |
[4] |
G. Bianchi, Non-existence and symmetry of solutions to the scalar curvature equation, Comm. Partial Differential Equations, 21 (1996), 229-234.
doi: 10.1080/03605309608821182.![]() ![]() ![]() |
[5] |
T. P. Branson, Group representations arising from Lorentz conformal geometry, J. Funct. Anal., 74 (1987), 199-291.
doi: 10.1016/0022-1236(87)90025-5.![]() ![]() ![]() |
[6] |
L. A. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304.![]() ![]() ![]() |
[7] |
S.-Y. Chang and P. C. Yang, Partial differential equations related to the Gauss-Bonnet-Chern integrand on 4-manifolds, Proc. Conformal, Riemannian and Lagrangian Geometry, Univ. Lecture Ser., Vol. 27, pp. 1-30. American Mathematical Society, Providence, (2002).
doi: 10.1090/ulect/027/01.![]() ![]() ![]() |
[8] |
S.-Y. Chang and P. C. yang, A perturbation result in prescribing scalar curvature on $\mathbb{S}^{n}$, Duke Math. J., 64 (1991), 27-69.
doi: 10.1215/S0012-7094-91-06402-1.![]() ![]() ![]() |
[9] |
M. del Pino, P. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri-Coron's problem, Calc. Var. Partial Differential Equations, 16 (2003), 113-145.
doi: 10.1007/s005260100142.![]() ![]() ![]() |
[10] |
D. E. Edmunds, D. Fortunato and E. Jannelli, Critical exponents, critical dimensions and the biharmonic operator, Arch. Rational Mech. Anal., 112 (1990), 269-289.
doi: 10.1007/BF00381236.![]() ![]() ![]() |
[11] |
F. Gazzola, H.-C. Grunau and M. Squassina, Existence and nonexistence results for critical growth biharmonic elliptic equations, Calc. Var. Partial Differential Equations, 18 (2003), 117-143.
doi: 10.1007/s00526-002-0182-9.![]() ![]() ![]() |
[12] |
H.-C. Grunau and G. Sweers, The maximum principle and positive principal eigenfunctions for polyharmonic equations. Reaction diffusion systems, Lect. Notes Pure Appl. Math., 194 (1998), 163-183.
![]() ![]() |
[13] |
H.-C. Grunau and G. Sweers, Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions, Math. Ann., 307 (1997), 589-626.
doi: 10.1007/s002080050052.![]() ![]() ![]() |
[14] |
Y. Guo and Y. Hu, Non-degeneracy of bubble solutions for higher order prescribed curvature problem, Adv. Nonlinear Stud., 22 (2022), 15-40.
doi: 10.1515/ans-2022-0003.![]() ![]() ![]() |
[15] |
Y. Guo and B. Li, Infinitely many solutions for the prescribed curvature problem of polyharmonic operator, Calc. Var. Partial Differential Equations, 46 (2013), 809-836.
doi: 10.1007/s00526-012-0504-5.![]() ![]() ![]() |
[16] |
Y. Guo, M. Musso, S. Peng and S. Yan, Non-degeneracy of multi-bubbling solutions for the prescribed scalar curvature equations and applications, J. Funct. Anal., 279 (2020), 108553, 29 pp.
doi: 10.1016/j.jfa.2020.108553.![]() ![]() ![]() |
[17] |
Y. Li, J. Wei and H. Xu, Multi-bump solutions of $-\Delta u = K(x)u^{\frac{n+2}{n-2}}$ on lattices in $\mathbb{R}^n$, J. Reine Angew. Math., 743 (2018), 163-211.
doi: 10.1515/crelle-2015-0090.![]() ![]() ![]() |
[18] |
C.-S. Lin, On Liouville theorem and a priori estimates for the scalar curvature equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci.(4), 27 (1998), 107-130, http://www.numdam.org/item/?id=ASNSP_1998_4_27_1_107_0.
![]() ![]() |
[19] |
C.-S. Lin and S.-S. Lin, Positive radial solutions for $\Delta u + K(x)u^{\frac{n+2}{n-2}} = 0$ in $\mathbb{R}^{n}$ and related topics, Appl. Anal., 38 (1990), 121-159.
doi: 10.1080/00036819008839959.![]() ![]() ![]() |
[20] |
S. M. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds, SIGMA Symmetry Integrability Geom. Methods Appl., 4 (2008), 1-3.
doi: 10.3842/SIGMA.2008.036.![]() ![]() ![]() |
[21] |
P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J., 35 (1986), 681-703.
doi: 10.1512/iumj.1986.35.35036.![]() ![]() ![]() |
[22] |
P. Pucci and J. Serrin, Critical exponents and critical dimensions for polyharmonic operators, J. Math. Pures Appl. (9), 69 (1990), 55-83.
![]() ![]() |
[23] |
C. A. Swanson, The best Sobolev constant, Appl. Ana., 47 (1992), 227-239.
doi: 10.1080/00036819208840142.![]() ![]() ![]() |
[24] |
J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228.
doi: 10.1007/s002080050258.![]() ![]() ![]() |
[25] |
J. Wei and S. Yan, Infinitely many solutions for the prescribed scalar curvature problem on $\mathbb{S}^{N}$, J. Funct. Anal., 258 (2010), 3048-3081.
doi: 10.1016/j.jfa.2009.12.008.![]() ![]() ![]() |
[26] |
S. Yan, Concentration of solutions for the scalar curvature equation on $\mathbb{R}^{N}$, J. Differential Equations, 163 (2000), 239-264.
doi: 10.1006/jdeq.1999.3718.![]() ![]() ![]() |