This paper is motivated by the transverse stability properties of the line solitary wave solutions of the (a, b, c, d) class of Boussinesq systems introduced in [
Citation: |
[1] | B. Alvarez-Samaniego and D. Lannes, Large time existence for $3D$ water-waves and asymptotics, Inventiones Math., 171 (2008), 485-541. doi: 10.1007/s00222-007-0088-4. |
[2] | C. J. Amick, Regularity and uniqueness of solutions of the Boussinesq system of equations, J. Diff. Eq., 54 (1984), 231-247. doi: 10.1016/0022-0396(84)90160-8. |
[3] | J. Angulo Pava, On the Cauchy problem for a Boussinesq-type system, Adv. Diff. Eq., 4 (1999), 457-492. |
[4] | C. T. Anh, Influence of surface tension and bottom topography on internal waves, M3AS, 19 (2009), 2145-2175. doi: 10.1142/S0218202509004078. |
[5] | L. Arlen, T. Fomcke and P. Nabelek, On solutions to the integrable Kaup-Broer system with strong capillarity, Preprint (2022). |
[6] | C. Audiard, Small energy traveling waves for the Euler-Korteweg system, Nonlinearity, 30 (2017), 3362-3399. doi: 10.1088/1361-6544/aa7cc2. |
[7] | E. S. Bao, R. M. Chen and Q. Liu, Existence and symmetry of ground states to the Boussinesq abcd system, Arch. Rational Mech. Anal., 216 (2015), 569-591. doi: 10.1007/s00205-014-0814-1. |
[8] | S. Benzoni-Gavage, Planar traveling waves in capillary fluids, Differ. Integral Equ., 26 (2013), 439-485. |
[9] | S. Benzoni-Gavage, Spectral transverse instability of solitary waves in Korteweg fluids, J. Math. Anal. Appl., 361 (2010), 338-357. doi: 10.1016/j.jmaa.2009.07.023. |
[10] | S. Benzoni-Gavage and D. Chiron, Long wave asymptotics for the Euler-Korteweg system, Rev. Mat. Iberoam., 34 (2018), 245-304. doi: 10.4171/RMI/985. |
[11] | S. Benzoni-Gavage, R. Danchin and S. Descombes, Well-posedness of one-dimensional Korteweg models, Electron. J. Differ. Equ., 2006 (2006), No. 59, 35 pp. |
[12] | S. Benzoni-Gavage, R. Danchin and S. Descombes, On the well-posedness for the Euler- Korteweg model in several space dimensions, Indiana Univ. Math. J., 56 (2007), 1499-1579. doi: 10.1512/iumj.2007.56.2974. |
[13] | S. Benzoni-Gavage, R. Danchin, S. Descombes and D. Jamet, Structure of Korteweg models and stability of diffuse interfaces, Interfaces Free Bound., 7 (2005), 371-414. doi: 10.4171/IFB/130. |
[14] | G. E. Bittencourt Moraes, G. De Lorenzo and F. Natali, Orbital stability of periodic traveling waves for the "abcd" Boussinesq system, arXiv: 2205.01439v1, 3 May 2022. |
[15] | J. L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media I : Derivation and the linear theory, J. Nonlinear Sci., 12 (2002), 283-318. doi: 10.1007/s00332-002-0466-4. |
[16] | J. L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II : The nonlinear theory, Nonlinearity, 17 (2004) 925-952. doi: 10.1088/0951-7715/17/3/010. |
[17] | J. L. Bona, T. Colin and C. Guillopé, Propagation of long-crested water waves, Disc. Cont. Dyn. Systems, 33 (2012), 599-628. doi: 10.3934/dcds.2013.33.599. |
[18] | J. L. Bona, T. Colin and D. Lannes, Long-wave approximation for water waves, Arch. Ration. Mech. Anal., 178, (2005), 373-410. doi: 10.1007/s00205-005-0378-1. |
[19] | J. L. Bona, D. Lannes and J.-C. Saut, Asymptotic models for internal waves, J. Math. Pures. Appl., 89 (2008), 538-566. doi: 10.1016/j.matpur.2008.02.003. |
[20] | J. L. Bona and R. Smith, A model for the two-way propagation of water waves in a channel, Math. Proc. Cambridge Phil. Soc., 79 (1976), 167-182. doi: 10.1017/S030500410005218X. |
[21] | L. J. F. Broer, Approximate equations for long water waves, Appl. Sci. Res., 31 (1975), 377-395. doi: 10.1007/BF00418048. |
[22] | C. Burtea, New long time existence results for a class of Boussinesq-type systems, J. Math. Pures Appl., 106 (2016), 203-236. doi: 10.1016/j.matpur.2016.02.008. |
[23] | C. Burtea, Long time existence results for bore-type initial data for BBM-Boussinesq systems, J. Diff. Equations, 261 (2016), 4825-4860. doi: 10.1016/j.jde.2016.07.014. |
[24] | F. Chazel, Influence of bottom topography on long water waves, M2AN, 41 (2007), 771-799. doi: 10.1051/m2an:2007041. |
[25] | H. Chen, M. Chen and N. V. Nguyen, Cnoidal wave solutions to Boussinesq systems, Nonlinearity, 20 (2007), 1443-1461. doi: 10.1088/0951-7715/20/6/007. |
[26] | M. Chen, Exact solutions of various Boussinesq systems, Appl. Math. Lett., 11 (1998), 45-49. doi: 10.1016/S0893-9659(98)00078-0. |
[27] | M. Chen, Exact traveling-wave solutions to bidirectional wave equations, Internat. J. Theoret. Phys., 37 (1998), 1547-1567. doi: 10.1023/A:1026667903256. |
[28] | M. Chen, Solitary-wave and multi-pulsed traveling wave solutions of Boussinesq systems, Appl. Anal., 75 (2000), 213-240. doi: 10.1080/00036810008840844. |
[29] | M. Chen, C. W. Curtis, B. Deconinck, C. W. Lee and N. Nguyen, Spectral stability of stationary solutions of a Boussinesq system describing long waves in dispersive media, SIAM J. Appl. Dyn. Syst, 9 (2010), 999-1018. doi: 10.1137/090779929. |
[30] | M. Chen and G. Iooss, Periodic wave patterns of two-dimensional Boussinesq systems, European Journal of Mechanics B/Fluids, 25 (2006), 393-405. doi: 10.1016/j.euromechflu.2005.11.004. |
[31] | M. Chen and G. Iooss, Standing waves for a two-way model system for water waves, European Journal of Mechanics B/Fluids, 24 (2005), 113-124. doi: 10.1016/j.euromechflu.2004.07.002. |
[32] | M. Chen and G. Iooss, Asymmetric periodic traveling wave patterns of two-dimensional Boussinesq systems, Physica D, 237 (2008), 1539-1552. doi: 10.1016/j.physd.2008.03.016. |
[33] | M. Chen, N. V. Nguyen and S.-M. Sun, Solitary-wave solutions to Bousinesq systems with large surface tension, Discrete Contin. Dyn. Syst., 26 (2010), 1153-1184. doi: 10.3934/dcds.2010.26.1153. |
[34] | M. Chen, N. V. Nguyen and S.-M. Sun, Existence of traveling-wave solutions to Boussinesq systems, Diff. Int. Equations, 24 (2011), 895-908. |
[35] | P. Daripa and R. K. Dash, A class of model equations for bi-directional propagation of capillary-gravity waves, Int. J. Eng. Sc., 41 (2003), 201-218. doi: 10.1016/S0020-7225(02)00180-5. |
[36] | V. A. Dougalis, A. Durán, M. A. López-Marcos and D. E. Mitsotakis, A numerical approach of the stability of solitary waves of the Bona-Smith family of Boussinesq suystems, J. Nonlinear Sci., 17 (2007), 569-607. doi: 10.1007/s00332-007-9004-8. |
[37] | V. A. Dougalis and D. E. Mitsotakis, Solitary waves of the Bona-Smith system, in Advances in Scattering Theory and Biomedical Engineering, ed. by D. Fotiadis and C. Massalas, World Scientific, New Jersey, 2004,286-294. doi: 10.1142/9789812702593_0030. |
[38] | V. A. Dougalis, D. E. Mitsotakis and J.-C. Saut, On some Boussinesq systems in two space dimensions: Theory and numerical analysis, Mathematical Modelling and Numerical Analysis, 41 (2007), 825-854. doi: 10.1051/m2an:2007043. |
[39] | V. Duchêne, Asymptotic shallow water models for internal waves in a two-fluid system with a free surface, SIAM J. Math. Anal., 42 (2010), 2229-2260. doi: 10.1137/090761100. |
[40] | V. Duchêne, Boussinesq-Boussinesq systems for internal waves with a free surface and the KdV approximation, ESAIM: M2AN, 46 (2012), 145-185. doi: 10.1051/m2an/2011037. |
[41] | V. Duchêne, S. Israwi and R. Talhouk, A new class of two-layer Green-Naghdi systems with improved frequency dispersion, Stud. Appl. Math., 137 (2016), 356–415. arXiv: 1503.02397v1 [math.AP], 9 Mar 2015. doi: 10.1111/sapm.12125. |
[42] | M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74 (1987), 160-197. doi: 10.1016/0022-1236(87)90044-9. |
[43] | P. Grisvard, Quelques propriétés des espaces de Sobolev, utiles dans l'étude des équations de Navier-Stokes (1), Problèmes D'évolution, Non linéaires, Séminaire de Nice, (1974-1976). |
[44] | S. Hakkaev, M. Stanislova and A. Stefanov, Spectral stability for subsonic traveling pulses of the Boussinesq "abc" system, SIAM J. Applied Dynamical Systems, 12 (2013), 878-898. doi: 10.1137/120891782. |
[45] | J. Höwing, Stability of large and small amplitude solitary waves in the generalized Korteweg-de Vries and Euler-Korteweg/Boussinesq equations, J. Diff. Equations, 251 (2011), 2515-2533. doi: 10.1016/j.jde.2011.06.016. |
[46] | J. Hu, Global well-posedness of the BCL system with viscosity, Chin. App. Math. Ser. B, 30 (2009), 153-172. doi: 10.1007/s11401-008-0095-9. |
[47] | D. J. Kaup, A higher-order water-wave equation and the method for solving it, Progr. Theoret. Phys., 54 (1975), 396-408. doi: 10.1143/PTP.54.396. |
[48] | N. Kita and J. Segata, Well-posedness for the Boussinesq-type system related to the water wave, Funkcial. Ekvac., 47 (2004), 329-350. doi: 10.1619/fesi.47.329. |
[49] | B. A. Kupperschmidt, Mathematics of dispersive water waves, Commun. Math. Phys., 99 (1985), 51-73. doi: 10.1007/BF01466593. |
[50] | D. Lannes, Modélisation des Ondes de Surface et Justification Mathématique, unpublished notes, 2005. |
[51] | D. Lannes, Sharp estimates for pseudo-differential operators with symbols of limited smoothness and commutators, J. Funct. Anal., 232 (2006), 495-539. doi: 10.1016/j.jfa.2005.07.003. |
[52] | D. Lannes, Water Waves: Mathematical Theory and Asymptotics, Mathematical Surveys and Monographs, vol 188. (2013), AMS, Providence. |
[53] | D. Lannes and J. -C.Saut, Weakly transverse Boussinesq systems and the KP approximation, Nonlinearity, 19 (2006), 2853-2875. doi: 10.1088/0951-7715/19/12/007. |
[54] | S. Li and M. Chen, Diamond shaped standing wave patterns of a two-dimensional Boussinesq system, Applied Num. Math., 141 (2019), 91-101. doi: 10.1016/j.apnum.2018.07.004. |
[55] | S. Li, M. Chen and B. Zhang, Standing lattice wave patterns of a Boussinesq system, J. Math. Fluid Mech., 21 (2019), Paper No. 28, 21 pp. doi: 10.1007/s00021-019-0433-6. |
[56] | F. Linares, D. Pilod and J.-C. Saut, Well-posedness of strongly dispersive two-dimensional surface waves Boussinesq systems, SIAM J. Math. Analysis, 44 (2012), 4195-4221. doi: 10.1137/110828277. |
[57] | B. Mésognon-Gireau, The Cauchy problem on large time for a Boussinesq-Peregrine equation with large topography variations, Advances in Diff. Equations, 22 (2015), 457-504. |
[58] | M. Ming, J. C. Saut and P. Zhang, Long-time existence of solutions to Boussinesq systems, SIAM. J. Math. Anal., 44 (2012), 4078-4100. doi: 10.1137/110834214. |
[59] | L. Molinet, R. Talhouk and I. Zaiter, The classical Boussinesq system revisited, Nonlinearity, 34 (2021), 744-775. doi: 10.1088/1361-6544/abcea6. |
[60] | P. V. Nabelek and V. E. Zakharov, Solutions to the Kaup-Broer system and its (2+1) dimensional integrable generalization via a dressing method, Physica D, 409 (2020), 132478. doi: 10.1016/j.physd.2020.132478. |
[61] | F. Oliveira, A note on the existence of traveling-wave solutions to a Boussinesq system, Diff. Int. Equations, 29 (2016), 127-136. doi: 10.57262/die/1448323255. |
[62] | M. Paddick, Transverse nonlinear instability of Euler-Korteweg solitons, Annales de la Faculté des Sciences de Toulouse, 26 (2017), 23-48. doi: 10.5802/afst.1525. |
[63] | F. Rousset and N. Tzvetkov, Transverse instability of the line solitary water-waves, Invent. Math., 184 (2011), 257-388. doi: 10.1007/s00222-010-0290-7. |
[64] | F. Rousset and N. Tzvetkov, A simple criterion of transverse instability for solitary waves, Math. Res. Lett., 17 (2010), 157-169. doi: 10.4310/MRL.2010.v17.n1.a12. |
[65] | F. Rousset and N. Tzvetkov, Transverse nonlinear instability for two-dimensional dispersive models, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 477-496. doi: 10.1016/j.anihpc.2007.09.006. |
[66] | F. Rousset and N. Tzvetkov, Transverse nonlinear instability of solitary waves for some Hamiltonian PDE's, J. Math. Pures et Appl., 90 (2008), 550-590. doi: 10.1016/j.matpur.2008.07.004. |
[67] | J.-C. Saut, On Boussinesq and Related Systems, book in preparation. |
[68] | J.-C. Saut, C. Wang and L. Xu, The Cauchy problem on large time for surface waves Boussinesq systems II, SIAM J. Math. Anal., 49 (2017), 2321-2386. doi: 10.1137/15M1050203. |
[69] | J.-C. Saut and L. Xu, The Cauchy problem on large time for surface waves Boussinesq systems, J. Math.Pures et Appl., 97 (2012), 635-662. doi: 10.1016/j.matpur.2011.09.012. |
[70] | J.-C. Saut and L. Xu, Well-posedness on large time for a modified full dispersion system of surface waves, J. Math. Phys., 53 (2012), 115606. doi: 10.1063/1.4738638. |
[71] | J.-C. Saut and L. Xu, Long time existence for a strongly dispersive Boussinesq system, SIAM J. Math. Anal., 52 (2020), 2803-2848. doi: 10.1137/19M1250698. |
[72] | J.-C. Saut and L. Xu, Long time existence for a two-dimensional strongly dispersive Boussinesq system, Communications on PDE, 46 (2021), 2057-2087. doi: 10.1080/03605302.2021.1920616. |
[73] | J.-C. Saut and L. Xu, Boussinesq, Schrödinger and Euler-Korteweg, in Mathematical Physics and its Interactions, to appear in Proceedings of the workshop "Mathematical Physics and its Interactions" [Proceedings in Mathematics and Statistics (PROMS), Springer]. |
[74] | M. E. Schonbek, Existence of solutions for the Boussinesq system of equations, J. Diff. Eq., 42 (1981), 325-352. doi: 10.1016/0022-0396(81)90108-X. |
[75] | J. F. Toland, Solitary wave solutions for a model of two-way propagation of water waves in a channel, Math. Proc. Camb. Phil. Soc., 90 (1981), 343-360. doi: 10.1017/S0305004100058801. |
[76] | J. F. Toland, Existence of symmetric homoclinic orbits for systems of Euler-Lagrange equations, In Proceedings of Symposia in Pure Mathematics, volume 45, Part 2, (1986), 447-459. Am. Math. Soc., Providence, 1986. |
[77] | J. F. Toland, Uniqueness and a priori bounds for certain homoclinic orbits of a Boussinesq system modelling solitary water waves, Commun. Math. Phys., 94 (1984), 239-254. doi: 10.1007/BF01209303. |
[78] | G. B. Whitham, Linear and Nonlinear Waves, Wiley, New York, 1974. |
[79] | V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 2 (1968), 190-194. doi: 10.1007/BF00913182. |
[80] | V. E. Zakharov, Weakly nonlinear waves on the surface of an ideal finite depth fluid, Amer. Math. Soc. Transl., 182 (1998), 167-197. doi: 10.1090/trans2/182/06. |