\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Long-time behavior of solutions to the $ M_1 $ model with boundary effect

  • *Corresponding author: Changjiang Zhu

    *Corresponding author: Changjiang Zhu

The second author is supported by the National Natural Science Foundation of China #12171160, 11771150, 11831003 and the Guangdong Provincial Key Laboratory of Human Digital Twin #2022B1212010004.

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this paper, we are concerned with the asymptotic behavior of solutions of $ M_1 $ model on quadrant $ (x,t) \in \mathbb{R}^{+} \times \mathbb{R}^{+} $. From this model, combined with damped compressible Euler equations, a more general system is introduced. We show that the solutions to the initial boundary value problem of this system globally exist and tend time-asymptotically to the corresponding nonlinear parabolic equation governed by the related Darcy's law. Compared with previous results on compressible Euler equations with damping obtained by Nishihara and Yang in [26], and Marcati, Mei and Rubino in [17], the better convergence rates are obtained. The approach adopted is based on the technical time-weighted energy estimates together with the Green's function method.

    Mathematics Subject Classification: Primary: 85A25, 35L65; Secondary: 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] C. BerthonP. Charrier and B. Dubroca, An asymptotic preserving relaxation scheme for a moment model of radiative transfer, C. R. Math. Acad. Sci. Paris, 344 (2007), 467-472.  doi: 10.1016/j.crma.2007.02.004.
    [2] C. BerthonP. Charrier and B. Dubroca, An HLLC scheme to solve the $M_{1}$ model of radiative transfer in two space dimensions, J. Scie. Comput., 31 (2007), 347-389.  doi: 10.1007/s10915-006-9108-6.
    [3] C. BerthonJ. DuboisB. DubrocaT.-H. Nguyen-Bui and R. Turpault, A free streaming contact preserving scheme for the $M_{1}$ Model, Adv. Appl. Math. Mech., 2 (2010), 259-285.  doi: 10.4208/aamm.09-m09105.
    [4] C. Buet and S. Cordier, An asymptotic preserving scheme for hydrodynamics radiative transfer models: Numerics for radiative transfer, Numer. Math., 108 (2007), 199-221.  doi: 10.1007/s00211-007-0094-x.
    [5] H. CuiH. YinC. Zhu and L. Zhu, Convergence to diffusion waves for solutions of Euler equations with time-depending damping on quadrant, Sci. China Math., 62 (2019), 33-62.  doi: 10.1007/s11425-017-9271-x.
    [6] S. Geng and L. Zhang, Boundary effects and large-time behaviour for quasilinear equations with nonlinear damping, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 959-978.  doi: 10.1017/S0308210515000219.
    [7] T. Goudona and C. Lin, Analysis of the $M_{1}$ model: Well-posedness and diffusion asymptotics, J. Math. Anal. Appl., 402 (2013), 579-593.  doi: 10.1016/j.jmaa.2013.01.042.
    [8] L. Hsiao and T.-P. Liu, Convergence to diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Commun. Math. Phys., 143 (1992), 599-605.  doi: 10.1007/BF02099268.
    [9] L. Hsiao and T.-P. Liu, Nonlinear diffusive phenomena of nonlinear hyperbolic systems, Chin. Ann. Math. Ser. B, 14 (1993), 465-480. 
    [10] L. Hsiao and T. Luo, Nonlinear diffusion phenomena of solutions for the system of compressible adiabatic flow through porous media, J. Differential Equations, 125 (1996), 329-365.  doi: 10.1006/jdeq.1996.0034.
    [11] F. Huang and R. Pan, Convergence rate for compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 166 (2003), 359-376.  doi: 10.1007/s00205-002-0234-5.
    [12] F. Huang and R. Pan, Asymptotic behavior of the solutions to the damped compressible Euler equations with vacuum, J. Differential Equations, 220 (2006), 207-233.  doi: 10.1016/j.jde.2005.03.012.
    [13] M. Jiang and C. Zhu, Convergence to strong nonlinear diffusion waves for solutions to p-system with damping on quadrant, J. Differential Equations, 246 (2009), 50-77.  doi: 10.1016/j.jde.2008.03.033.
    [14] C.-K. LinC.-T. Lin and M. Mei, Asymptotic behavior of solution to nonlinear damped p-system with boundary effect, Int. J. Numer. Anal. Model., Ser. B, 1 (2010), 70-92. 
    [15] H. Ma and M. Mei, Best asymptotic profile for linear damped p-system with boundary effect, J. Differential Equations, 249 (2010), 446-484.  doi: 10.1016/j.jde.2010.04.008.
    [16] P. Marcati and M. Mei, Convergence to nonlinear diffusion waves for solutions of the initial-boundary problem to the hyperbolic conservation laws with damping, Quart. Appl. Math., 58 (2000), 763-784.  doi: 10.1090/qam/1788427.
    [17] P. MarcatiM. Mei and B. Rubino, Optimal convergence rates to diffusion waves for solutions of the hyperbolic conservation laws with damping, J. Math. Fluid Mech., 7 (2005), 224-240.  doi: 10.1007/s00021-005-0155-9.
    [18] A. Matsumura, Global existence and asymptotics of the solutions of the second-order quasilinear hyperbolic equation with the first order dissipation, Publ. RIMS Kyoto Univ., 13 (1977), 349-379.  doi: 10.2977/prims/1195189813.
    [19] M. Mei, Nonlinear diffusion waves for hyperbolic p-system with nonlinear damping, J. Differential Equations, 247 (2009), 1275-1296.  doi: 10.1016/j.jde.2009.04.004.
    [20] M. Mei, Best asymptotic profile for hyperbolic p-system with damping, SIAM J. Math. Anal., 42 (2010), 1-23.  doi: 10.1137/090756594.
    [21] D. Mihalas and  B. W. MihalasFoundation of Radiation Hydrodynamics, Oxford University Press, Oxford, 1984. 
    [22] K. Nishihara, Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping, J. Differential Equations, 131 (1996), 171-188.  doi: 10.1006/jdeq.1996.0159.
    [23] K. Nishihara, Asymptotic behavior of solutions of quasilinear hyperbolic equations with linear damping, J. Differential Equations, 137 (1997), 384-395.  doi: 10.1006/jdeq.1997.3268.
    [24] K. Nishihara, Asymptotic toward the diffusion wave for a one-dimensional compressible flow through porous media, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 177-196.  doi: 10.1017/S0308210500002341.
    [25] K. NishiharaW. Wang and T. Yang, $L^{p}$ convergence rate to nonlinear diffusion waves for p-system with damping, J. Differential Equations, 161 (2000), 191-218.  doi: 10.1006/jdeq.1999.3703.
    [26] K. Nishihara and T. Yang, Boundary effect on asymptotic behavior of solutions to the p-system with linear damping, J. Differential Equations, 156 (1999), 439-458.  doi: 10.1006/jdeq.1998.3598.
    [27] M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws, Funkcial. Ekvac., 41 (1998), 107-132. 
    [28] G. C. PomraningThe Equations of Radiation Hydrodynamics, Sciences Application, Pergamon Press, Oxford, 1973. 
    [29] W. Wang and T. Yang, The pointwise estimates of solutions for Euler equations with damping in multi-dimensions, J. Differential Equations, 173 (2001), 410-450.  doi: 10.1006/jdeq.2000.3937.
    [30] N. Zhang and C. Zhu, Convergence to nonlinear diffusion waves for solutions of $M_{1}$ model, preprint, 2021, arXiv: 2111.11035. doi: 10.1016/j.jde.2022.02.061.
    [31] H. Zhao, Convergence to strong nonlinear diffusion waves for solutions of p-system with damping, J. Differential Equations, 174 (2001), 200-236.  doi: 10.1006/jdeq.2000.3936.
    [32] H. Zhao, Asymptotic behaviors of solutions of quasilinear hyperbolic equations with linear damping Ⅱ, J. Differential Equations, 167 (2000), 467-494.  doi: 10.1006/jdeq.2000.3793.
    [33] C. Zhu and M. Jiang, $L^{p}$-decay rates to nonlinear diffusion waves for p-system with nonlinear damping, Sci. China Math., Ser. A, 49 (2006), 721-739.  doi: 10.1007/s11425-006-0721-5.
  • 加载中
SHARE

Article Metrics

HTML views(1845) PDF downloads(176) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return