In this paper, we are concerned with the asymptotic behavior of solutions of $ M_1 $ model on quadrant $ (x,t) \in \mathbb{R}^{+} \times \mathbb{R}^{+} $. From this model, combined with damped compressible Euler equations, a more general system is introduced. We show that the solutions to the initial boundary value problem of this system globally exist and tend time-asymptotically to the corresponding nonlinear parabolic equation governed by the related Darcy's law. Compared with previous results on compressible Euler equations with damping obtained by Nishihara and Yang in [
Citation: |
[1] |
C. Berthon, P. Charrier and B. Dubroca, An asymptotic preserving relaxation scheme for a moment model of radiative transfer, C. R. Math. Acad. Sci. Paris, 344 (2007), 467-472.
doi: 10.1016/j.crma.2007.02.004.![]() ![]() ![]() |
[2] |
C. Berthon, P. Charrier and B. Dubroca, An HLLC scheme to solve the $M_{1}$ model of radiative transfer in two space dimensions, J. Scie. Comput., 31 (2007), 347-389.
doi: 10.1007/s10915-006-9108-6.![]() ![]() ![]() |
[3] |
C. Berthon, J. Dubois, B. Dubroca, T.-H. Nguyen-Bui and R. Turpault, A free streaming contact preserving scheme for the $M_{1}$ Model, Adv. Appl. Math. Mech., 2 (2010), 259-285.
doi: 10.4208/aamm.09-m09105.![]() ![]() ![]() |
[4] |
C. Buet and S. Cordier, An asymptotic preserving scheme for hydrodynamics radiative transfer models: Numerics for radiative transfer, Numer. Math., 108 (2007), 199-221.
doi: 10.1007/s00211-007-0094-x.![]() ![]() ![]() |
[5] |
H. Cui, H. Yin, C. Zhu and L. Zhu, Convergence to diffusion waves for solutions of Euler equations with time-depending damping on quadrant, Sci. China Math., 62 (2019), 33-62.
doi: 10.1007/s11425-017-9271-x.![]() ![]() ![]() |
[6] |
S. Geng and L. Zhang, Boundary effects and large-time behaviour for quasilinear equations with nonlinear damping, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 959-978.
doi: 10.1017/S0308210515000219.![]() ![]() ![]() |
[7] |
T. Goudona and C. Lin, Analysis of the $M_{1}$ model: Well-posedness and diffusion asymptotics, J. Math. Anal. Appl., 402 (2013), 579-593.
doi: 10.1016/j.jmaa.2013.01.042.![]() ![]() ![]() |
[8] |
L. Hsiao and T.-P. Liu, Convergence to diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Commun. Math. Phys., 143 (1992), 599-605.
doi: 10.1007/BF02099268.![]() ![]() ![]() |
[9] |
L. Hsiao and T.-P. Liu, Nonlinear diffusive phenomena of nonlinear hyperbolic systems, Chin. Ann. Math. Ser. B, 14 (1993), 465-480.
![]() ![]() |
[10] |
L. Hsiao and T. Luo, Nonlinear diffusion phenomena of solutions for the system of compressible adiabatic flow through porous media, J. Differential Equations, 125 (1996), 329-365.
doi: 10.1006/jdeq.1996.0034.![]() ![]() ![]() |
[11] |
F. Huang and R. Pan, Convergence rate for compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 166 (2003), 359-376.
doi: 10.1007/s00205-002-0234-5.![]() ![]() ![]() |
[12] |
F. Huang and R. Pan, Asymptotic behavior of the solutions to the damped compressible Euler equations with vacuum, J. Differential Equations, 220 (2006), 207-233.
doi: 10.1016/j.jde.2005.03.012.![]() ![]() ![]() |
[13] |
M. Jiang and C. Zhu, Convergence to strong nonlinear diffusion waves for solutions to p-system with damping on quadrant, J. Differential Equations, 246 (2009), 50-77.
doi: 10.1016/j.jde.2008.03.033.![]() ![]() ![]() |
[14] |
C.-K. Lin, C.-T. Lin and M. Mei, Asymptotic behavior of solution to nonlinear damped p-system with boundary effect, Int. J. Numer. Anal. Model., Ser. B, 1 (2010), 70-92.
![]() ![]() |
[15] |
H. Ma and M. Mei, Best asymptotic profile for linear damped p-system with boundary effect, J. Differential Equations, 249 (2010), 446-484.
doi: 10.1016/j.jde.2010.04.008.![]() ![]() ![]() |
[16] |
P. Marcati and M. Mei, Convergence to nonlinear diffusion waves for solutions of the initial-boundary problem to the hyperbolic conservation laws with damping, Quart. Appl. Math., 58 (2000), 763-784.
doi: 10.1090/qam/1788427.![]() ![]() ![]() |
[17] |
P. Marcati, M. Mei and B. Rubino, Optimal convergence rates to diffusion waves for solutions of the hyperbolic conservation laws with damping, J. Math. Fluid Mech., 7 (2005), 224-240.
doi: 10.1007/s00021-005-0155-9.![]() ![]() ![]() |
[18] |
A. Matsumura, Global existence and asymptotics of the solutions of the second-order quasilinear hyperbolic equation with the first order dissipation, Publ. RIMS Kyoto Univ., 13 (1977), 349-379.
doi: 10.2977/prims/1195189813.![]() ![]() ![]() |
[19] |
M. Mei, Nonlinear diffusion waves for hyperbolic p-system with nonlinear damping, J. Differential Equations, 247 (2009), 1275-1296.
doi: 10.1016/j.jde.2009.04.004.![]() ![]() ![]() |
[20] |
M. Mei, Best asymptotic profile for hyperbolic p-system with damping, SIAM J. Math. Anal., 42 (2010), 1-23.
doi: 10.1137/090756594.![]() ![]() ![]() |
[21] |
D. Mihalas and B. W. Mihalas, Foundation of Radiation Hydrodynamics, Oxford University Press, Oxford, 1984.
![]() ![]() |
[22] |
K. Nishihara, Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping, J. Differential Equations, 131 (1996), 171-188.
doi: 10.1006/jdeq.1996.0159.![]() ![]() ![]() |
[23] |
K. Nishihara, Asymptotic behavior of solutions of quasilinear hyperbolic equations with linear damping, J. Differential Equations, 137 (1997), 384-395.
doi: 10.1006/jdeq.1997.3268.![]() ![]() ![]() |
[24] |
K. Nishihara, Asymptotic toward the diffusion wave for a one-dimensional compressible flow through porous media, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 177-196.
doi: 10.1017/S0308210500002341.![]() ![]() ![]() |
[25] |
K. Nishihara, W. Wang and T. Yang, $L^{p}$ convergence rate to nonlinear diffusion waves for p-system with damping, J. Differential Equations, 161 (2000), 191-218.
doi: 10.1006/jdeq.1999.3703.![]() ![]() ![]() |
[26] |
K. Nishihara and T. Yang, Boundary effect on asymptotic behavior of solutions to the p-system with linear damping, J. Differential Equations, 156 (1999), 439-458.
doi: 10.1006/jdeq.1998.3598.![]() ![]() ![]() |
[27] |
M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws, Funkcial. Ekvac., 41 (1998), 107-132.
![]() ![]() |
[28] |
G. C. Pomraning, The Equations of Radiation Hydrodynamics, Sciences Application, Pergamon Press, Oxford, 1973.
![]() |
[29] |
W. Wang and T. Yang, The pointwise estimates of solutions for Euler equations with damping in multi-dimensions, J. Differential Equations, 173 (2001), 410-450.
doi: 10.1006/jdeq.2000.3937.![]() ![]() ![]() |
[30] |
N. Zhang and C. Zhu, Convergence to nonlinear diffusion waves for solutions of $M_{1}$ model, preprint, 2021, arXiv: 2111.11035.
doi: 10.1016/j.jde.2022.02.061.![]() ![]() ![]() |
[31] |
H. Zhao, Convergence to strong nonlinear diffusion waves for solutions of p-system with damping, J. Differential Equations, 174 (2001), 200-236.
doi: 10.1006/jdeq.2000.3936.![]() ![]() ![]() |
[32] |
H. Zhao, Asymptotic behaviors of solutions of quasilinear hyperbolic equations with linear damping Ⅱ, J. Differential Equations, 167 (2000), 467-494.
doi: 10.1006/jdeq.2000.3793.![]() ![]() ![]() |
[33] |
C. Zhu and M. Jiang, $L^{p}$-decay rates to nonlinear diffusion waves for p-system with nonlinear damping, Sci. China Math., Ser. A, 49 (2006), 721-739.
doi: 10.1007/s11425-006-0721-5.![]() ![]() ![]() |