\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Partial regularity of the fractional Gelfand-Liouville system

  • *Corresponding author: Yeyao Hu

    *Corresponding author: Yeyao Hu 

The first author is partially supported by NSFC grants No.12101612 and No.12171456. The second author is partially supported by Science and Technology Commission of Shanghai Municipality No.22DZ2229014 and China Postdoctoral Science Foundation No.2022M721164. The research of the third author is partially supported by National Key R & D Program of China 2022YFA1006800, NSFC grants No.12171456 and No.12271369.

Abstract / Introduction Full Text(HTML) Figure(0) / Table(1) Related Papers Cited by
  • We study the extremal solutions of fractional Dirichlet problem

    $ \begin{equation} \nonumber \begin{cases} (-\Delta)^{s}u=\mu e^{v} &\mbox{in}\quad\Omega\\ (-\Delta)^{s}v=\lambda e^{u} &\mbox{in}\quad\Omega\\ u=v=0 &\mbox{on}\quad\mathbb{R}^{n}\setminus\Omega,\\ \end{cases} \end{equation} $

    where $ s\in(0, 1) $, $ \Omega\subset\mathbb{R}^{n} $ is a bounded domain and $ \mu $ with $ \lambda $ are positive parameters. We combined Caffarelli-Silvestre extension technique and $ \varepsilon $-regularity theory to obtain that the Hausdorff dimension of the singular set does not exceed $ n-10s $. This result fills in the gap of partial regularity of the fractional Gelfand-Liouville system.

    Mathematics Subject Classification: Primary: 35B65; Secondary: 35R11.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table .  Notations:

    $X=(x,t)$   represent points in $\mathbb{R}^{n+1}_{+}=\mathbb{R}^{n}\times[0,\infty)$;
    $B_{r}(x)$   the ball centered at x with radius $ r~ \mbox{in}~ \mathbb{R}^{n}, B_{r}:=B_{r}(0)$;
    $B_{r}^{n+1}(x)$   the ball centered at x $\mbox{with radius}~ r~ \mbox{in}~ \mathbb{R}^{n+1}, B_{r}^{n+1}:=B_{r}^{n+1}(0)$;
    $D_{r}(x)$   the intersection of $B_{r}^{n+1}(x)~ \mbox{and}~ \mathbb{R}_{+}^{n+1}, D_{r}:=D_{r}(0)$,
    $f_k$   $f_k=\min\{f,k\}$,
    $u_+$   $u_{+}=\max\{u,0\}$,
    C   C will stand for positive universal constants which are allowed to vary among different formulas and even within the same lines.
     | Show Table
    DownLoad: CSV
  • [1] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.
    [2] M. G. Crandall and P. H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problem, Arch. Rational Mech. Anal, 58 (1975), 207-218.  doi: 10.1007/BF00280741.
    [3] F. Da Lio, Partial regularity for stationary solutions to Liouville-type equation in dimension $3$, Comm. Partial Differential Equations, 33 (2008), 1890-1910.  doi: 10.1080/03605300802402625.
    [4] J. Dávila and O. Goubet, Partial regularity for a Liouville system, Discrete Contin. Dyn. Syst., 34 (2014), 2495-2503.  doi: 10.3934/dcds.2014.34.2495.
    [5] L. Dupaigne, A. Farina and B. Sirakov, Regularity of the extremal solutions for the Liouville system, Geometric Partial Differential Equations, 139-144. doi: 10.1007/978-88-7642-473-1_7.
    [6] L. DupaigneM. GherguO. Goubet and G. Warnault, The Gel'fand problem for the Biharmonic operator, Arch. Rational Mech. Anal., 208 (2013), 725-752.  doi: 10.1007/s00205-013-0613-0.
    [7] M. Fazly, Regularity of extermal solutions of nonlocal elliptic systems, Discrete Contin. Dyn. Syst., 40 (2020), 107-131.  doi: 10.3934/dcds.2020005.
    [8] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1998.
    [9] A. Hyder and W. Yang, Partial regularity of stable solutions to the fractional Gelfand-Liouville equation, Adv. Nonlinear Anal., 10 (2021), 1316-1327.  doi: 10.1515/anona-2020-0177.
    [10] A. Hyder and W. Yang, Classification of stable solutions to a non-local Gelfand-Liouville equation, Int. Math. Res. Not. IMRN, 2022 (2022), 5219–5255. doi: 10.1093/imrn/rnaa236.
    [11] F. Lin and X. Yang, Geometric Measure Theory: An Introduction. Advanced Mathematics (Beijing/Boston), vol. 1. Science Press/International Press, Boston/Beijing (2002).
    [12] F. Mignot and J.-P. Puel, Sur une class de problèmes non linéaires avec non linéairité positive, croissante, convexe, Comm. Partial Differential Equations, 5 (1980), 791-836.  doi: 10.1080/03605308008820155.
    [13] M. Montenegro, Minimal solutions for a class of elliptic systems, Bull. London Math. Soc., 37 (2005), 405-416.  doi: 10.1112/S0024609305004248.
    [14] K. Wang, Partial regularity of stable solutions to the Emden equation, Calc. Var. Partial Differential Equations, 44 (2012), 601-610.  doi: 10.1007/s00526-011-0446-3.
    [15] K. Wang, Erratum to: Partial regularity of stable solutions to the Emden equation, Calc. Var. Partial Differential Equations, 47 (2013), 433-435.  doi: 10.1007/s00526-012-0565-5.
  • 加载中

Tables(1)

SHARE

Article Metrics

HTML views(2290) PDF downloads(196) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return