\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Observable Lyapunov irregular sets for planar piecewise expanding maps

  • *Corresponding author: Teruhiko Soma

    *Corresponding author: Teruhiko Soma 

This work was partially supported by JSPS KAKENHI Grant Number 19K14575, 22K03342 and WISE program (MEXT) at Kyushu University

Abstract / Introduction Full Text(HTML) Figure(4) Related Papers Cited by
  • For any integer $ r $ with $ 1\leq r<\infty $, we present a one-parameter family $ F_\sigma $ $ (0<\sigma<1) $ of 2-dimensional piecewise $ \mathcal C^r $ expanding maps such that each $ F_\sigma $ has an observable (i.e. Lebesgue positive) Lyapunov irregular set. These maps are obtained by modifying the piecewise expanding map given in Tsujii [23]. In strong contrast to it, we also show that any Lyapunov irregular set of any 2-dimensional piecewise real analytic expanding map is not observable. This is based on the spectral analysis of piecewise expanding maps in Buzzi [5].

    Mathematics Subject Classification: Primary: 37C05, 37C30, 37C40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 2.1.  Splitting of $ D $

    Figure 3.1.  The case of $ 1\leq k+1<\gamma^m-\gamma^{m-1} $. When $ k+1 = \gamma^m-\gamma^{m-1} $, $ R(k+1,m) $ is contained in $ D_{0,-} $

    Figure 3.2.   

    Figure A.1.  $ K_k $ is the $ \Delta(k) $-neighborhood of $ J_k $ in $ \mathbb{R} $

  • [1] V. Baladi, Positive Perron–Frobenius Operators and Decay of Correlations, Advanced Series in Nonlinear Dynamics, 16, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789812813633.
    [2] V. Baladi, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps, A Functional Approach, Ergebnisse der Mathematik und ihrer Grenzgebiete 3, Folge. A Series of Modern Surveys in Mathematics, 68, Springer, Cham, 2018. doi: 10.1007/978-3-319-77661-3.
    [3] V. Baladi and S. Gouëzel, Good Banach spaces for piecewise hyperbolic maps via interpolation, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 26 (2009), 1453-1481. doi: 10.1016/j.anihpc.2009.01.001.
    [4] W. Bartoszek, Asymptotic periodicity of the iterates of positive contractions on Banach lattices, Studia Mathematica, 91 (1988), 179-188.  doi: 10.4064/sm-91-3-179-188.
    [5] J. Buzzi, Absolutely continuous invariant probability measures for arbitrary expanding piecewise $\mathbb{R}$-analytic mappings of the plane, Ergodic Theory Dynam. Sys., 20 (2000), 697-708.  doi: 10.1017/S0143385700000377.
    [6] J. Buzzi, No or infinitely many a.c.i.p. for piecewise expanding $C^r$ maps in higher dimensions, Comm. Math. Phys., 222 (2001), 495-501.  doi: 10.1007/s002200100509.
    [7] J. Buzzi and G. Keller, Zeta functions and transfer operators for multidimensional piecewise affine and expanding maps, Ergodic Theory Dynam. Sys., 21 (2001), 689-716.  doi: 10.1017/S0143385701001341.
    [8] E. Colli and E. Vargas, Non-trivial wandering domains and homoclinic bifurcations, Ergodic Theory Dynam. Sys., 21 (2001), 1657-1681.  doi: 10.1017/S0143385701001791.
    [9] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Cambridge Studies in Advanced Math., 80, Springer, 1984. doi: 10.1007/978-1-4684-9486-0.
    [10] P. GuarinoP.-A. Guihéneuf and B. Santiago, Dirac physical measures on saddle-type fixed points, J. Dynam. Diff. Equations, 34 (2022), 983-1048.  doi: 10.1007/s10884-020-09911-x.
    [11] H. Hennion, Sur un théorème spectral et son application aux noyaux lipchitziens, Proc. Amer. Math. Soc., 118 (1993), 627-634.  doi: 10.2307/2160348.
    [12] H. Hennion and L. Hervé, Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness, Lecture Notes in Mathematics, 1766, Springer-Verlag, Berlin, 2001. doi: 10.1007/b87874.
    [13] S. KirikiX. LiY. Nakano and T. Soma, Abundance of observable Lyapunov irregular sets, Comm. Math. Phys., 391 (2022), 1241-1269.  doi: 10.1007/s00220-022-04337-6.
    [14] A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc., 186 (1973), 481-488.  doi: 10.1090/S0002-9947-1973-0335758-1.
    [15] F. NakamuraY. Nakano and H. Toyokawa, Lyapunov exponents for random maps, Discrete Contin. Dyn. Syst. B, 27 (2022), 7657-7669.  doi: 10.3934/dcdsb.2022058.
    [16] V. I. Oseledec, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19 (1968), 197-231. 
    [17] W. Ott and J. A. Yorke, When Lyapunov exponents fail to exist, Physical Review E, 78 (2008), 056203, 6 pp. doi: 10.1103/PhysRevE.78.056203.
    [18] H.-O. Peitgen, H. Jürgens and D. Saupe, Chaos and Fractals. New Frontiers of Science, Second ed., Springer-Verlag, New York, 2004. doi: 10.1007/b97624.
    [19] M. Rychlik, Bounded variation and invariant measures, Studia Math., 76 (1983), 69-80.  doi: 10.4064/sm-76-1-69-80.
    [20] F. Takens, Orbits with historic behaviour, or non-existence of averages, Nonlinearity, 2 (2008), T33-T36. doi: 10.1088/0951-7715/21/3/T02.
    [21] D. Thomine, A spectral gap for transfer operators of piecewise expanding maps, Discrete Contin. Dyn. Syst., 30 (2011), 917-944.  doi: 10.3934/dcds.2011.30.917.
    [22] M. Tsujii, Absolutely continuous invariant measures for piecewise real-analytic expanding maps on the plane, Comm. Math. Phys., 208 (2000), 605-622.  doi: 10.1007/s002200050003.
    [23] M. Tsujii, Piecewise expanding maps on the plane with singular ergodic properties, Ergodic Theory Dynam. Sys., 20 (2000), 1851-1857.  doi: 10.1017/S0143385700001012.
    [24] M. Viana, Lectures on Lyapunov Exponents, Cambridge Studies in Advanced Math., 145, Cambridge University Press, Cambridge, 2014. doi: 10.1017/CBO9781139976602.
  • 加载中

Figures(4)

SHARE

Article Metrics

HTML views(1499) PDF downloads(153) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return