For any integer $ r $ with $ 1\leq r<\infty $, we present a one-parameter family $ F_\sigma $ $ (0<\sigma<1) $ of 2-dimensional piecewise $ \mathcal C^r $ expanding maps such that each $ F_\sigma $ has an observable (i.e. Lebesgue positive) Lyapunov irregular set. These maps are obtained by modifying the piecewise expanding map given in Tsujii [
Citation: |
[1] |
V. Baladi, Positive Perron–Frobenius Operators and Decay of Correlations, Advanced Series in Nonlinear Dynamics, 16, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
doi: 10.1142/9789812813633.![]() ![]() ![]() |
[2] |
V. Baladi, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps, A Functional Approach, Ergebnisse der Mathematik und ihrer Grenzgebiete 3, Folge. A Series of Modern Surveys in Mathematics, 68, Springer, Cham, 2018.
doi: 10.1007/978-3-319-77661-3.![]() ![]() ![]() |
[3] |
V. Baladi and S. Gouëzel, Good Banach spaces for piecewise hyperbolic maps via interpolation, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 26 (2009), 1453-1481.
doi: 10.1016/j.anihpc.2009.01.001.![]() ![]() ![]() |
[4] |
W. Bartoszek, Asymptotic periodicity of the iterates of positive contractions on Banach lattices, Studia Mathematica, 91 (1988), 179-188.
doi: 10.4064/sm-91-3-179-188.![]() ![]() ![]() |
[5] |
J. Buzzi, Absolutely continuous invariant probability measures for arbitrary expanding piecewise $\mathbb{R}$-analytic mappings of the plane, Ergodic Theory Dynam. Sys., 20 (2000), 697-708.
doi: 10.1017/S0143385700000377.![]() ![]() ![]() |
[6] |
J. Buzzi, No or infinitely many a.c.i.p. for piecewise expanding $C^r$ maps in higher dimensions, Comm. Math. Phys., 222 (2001), 495-501.
doi: 10.1007/s002200100509.![]() ![]() ![]() |
[7] |
J. Buzzi and G. Keller, Zeta functions and transfer operators for multidimensional piecewise affine and expanding maps, Ergodic Theory Dynam. Sys., 21 (2001), 689-716.
doi: 10.1017/S0143385701001341.![]() ![]() ![]() |
[8] |
E. Colli and E. Vargas, Non-trivial wandering domains and homoclinic bifurcations, Ergodic Theory Dynam. Sys., 21 (2001), 1657-1681.
doi: 10.1017/S0143385701001791.![]() ![]() ![]() |
[9] |
E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Cambridge Studies in Advanced Math., 80, Springer, 1984.
doi: 10.1007/978-1-4684-9486-0.![]() ![]() ![]() |
[10] |
P. Guarino, P.-A. Guihéneuf and B. Santiago, Dirac physical measures on saddle-type fixed points, J. Dynam. Diff. Equations, 34 (2022), 983-1048.
doi: 10.1007/s10884-020-09911-x.![]() ![]() ![]() |
[11] |
H. Hennion, Sur un théorème spectral et son application aux noyaux lipchitziens, Proc. Amer. Math. Soc., 118 (1993), 627-634.
doi: 10.2307/2160348.![]() ![]() ![]() |
[12] |
H. Hennion and L. Hervé, Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness, Lecture Notes in Mathematics, 1766, Springer-Verlag, Berlin, 2001.
doi: 10.1007/b87874.![]() ![]() ![]() |
[13] |
S. Kiriki, X. Li, Y. Nakano and T. Soma, Abundance of observable Lyapunov irregular sets, Comm. Math. Phys., 391 (2022), 1241-1269.
doi: 10.1007/s00220-022-04337-6.![]() ![]() ![]() |
[14] |
A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc., 186 (1973), 481-488.
doi: 10.1090/S0002-9947-1973-0335758-1.![]() ![]() ![]() |
[15] |
F. Nakamura, Y. Nakano and H. Toyokawa, Lyapunov exponents for random maps, Discrete Contin. Dyn. Syst. B, 27 (2022), 7657-7669.
doi: 10.3934/dcdsb.2022058.![]() ![]() ![]() |
[16] |
V. I. Oseledec, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19 (1968), 197-231.
![]() |
[17] |
W. Ott and J. A. Yorke, When Lyapunov exponents fail to exist, Physical Review E, 78 (2008), 056203, 6 pp.
doi: 10.1103/PhysRevE.78.056203.![]() ![]() ![]() |
[18] |
H.-O. Peitgen, H. Jürgens and D. Saupe, Chaos and Fractals. New Frontiers of Science, Second ed., Springer-Verlag, New York, 2004.
doi: 10.1007/b97624.![]() ![]() ![]() |
[19] |
M. Rychlik, Bounded variation and invariant measures, Studia Math., 76 (1983), 69-80.
doi: 10.4064/sm-76-1-69-80.![]() ![]() ![]() |
[20] |
F. Takens, Orbits with historic behaviour, or non-existence of averages, Nonlinearity, 2 (2008), T33-T36.
doi: 10.1088/0951-7715/21/3/T02.![]() ![]() ![]() |
[21] |
D. Thomine, A spectral gap for transfer operators of piecewise expanding maps, Discrete Contin. Dyn. Syst., 30 (2011), 917-944.
doi: 10.3934/dcds.2011.30.917.![]() ![]() ![]() |
[22] |
M. Tsujii, Absolutely continuous invariant measures for piecewise real-analytic expanding maps on the plane, Comm. Math. Phys., 208 (2000), 605-622.
doi: 10.1007/s002200050003.![]() ![]() ![]() |
[23] |
M. Tsujii, Piecewise expanding maps on the plane with singular ergodic properties, Ergodic Theory Dynam. Sys., 20 (2000), 1851-1857.
doi: 10.1017/S0143385700001012.![]() ![]() ![]() |
[24] |
M. Viana, Lectures on Lyapunov Exponents, Cambridge Studies in Advanced Math., 145, Cambridge University Press, Cambridge, 2014.
doi: 10.1017/CBO9781139976602.![]() ![]() ![]() |
Splitting of
The case of