[1]
|
F. P. Boca and C. Merriman, $\alpha$-expansions with odd partial quotients, J. Number Theory, 199 (2019), 322-341.
doi: 10.1016/j.jnt.2018.11.015.
|
[2]
|
R. M. Burton, C. Kraaikamp and T. A. Schmidt, Natural extensions for the Rosen fractions, Trans. Amer. Math. Soc., 352 (2000), 1277-1298.
doi: 10.1090/S0002-9947-99-02442-3.
|
[3]
|
K. Calta, C. Kraaikamp and T. A. Schmidt, Synchronization is full measure for all $\alpha$-deformations of an infinite class of continued fractions, Ann. Sc. Norm. Super. Pisa Cl. Sci., 20 (2020), 951-1008.
|
[4]
|
C. Carminati, S. Isola and G. Tiozzo, Continued fractions with $SL(2, \mathbb{Z})$-branches: Combinatorics and entropy, Trans. Amer. Math. Soc., 370 (2018), 4927-4973.
doi: 10.1090/tran/7109.
|
[5]
|
C. Carminati, N. Langeveld and W. Steiner, Tanaka-Ito $\alpha$-continued fractions and matching, 2020., Nonlinearity, 34 (2021), 3565-3582.
doi: 10.1088/1361-6544/abef75.
|
[6]
|
C. Carminati and G. Tiozzo, A canonical thickening of $\mathbb{Q}$ and the entropy of $\alpha$-continued fraction transformations, Ergodic Theory Dynam. Systems, 32 (2012), 1249-1269.
doi: 10.1017/S0143385711000447.
|
[7]
|
K. Dajani and C. Kalle, A First Course in Ergodic Theory, Chapman and Hall/CRC, 2021.
|
[8]
|
K. Dajani and C. Kraaikamp, Ergodic Theory of Numbers, Carus Mathematical Monographs, 29. Mathematical Association of America, Washington, DC, 2002.
|
[9]
|
Y. Hartono and C. Kraaikamp, On continued fractions with odd partial quotients, Rev. Roum. Math. Pures Appl., 47 (2002), 43-62.
|
[10]
|
M. Iosifescu and C. Kraaikamp, Metrical Theory of Continued Fractions, Mathematics and its Applications, vol. 547, Kluwer, Dordrecht, 2002.
doi: 10.1007/978-94-015-9940-5.
|
[11]
|
J. de Jonge, C. Kraaikamp and H. Nakada, Orbits of N-expansions with a finite set of digits, Monatsh. Math., 198 (2022), 79-119.
doi: 10.1007/s00605-021-01658-x.
|
[12]
|
S. Katok and I. Ugarcovici, Structure of attractors for $(a, b)$-continued fraction transformations, J. Mod. Dyn., 4 (2010), 637-691.
doi: 10.3934/jmd.2010.4.637.
|
[13]
|
S. Katok and I. Ugarcovici, Theory of $(a, b)$-continued fraction transformations and applications, Electron. Res. Announc.Math. Sci., 17 (2010), 20-33.
doi: 10.3934/era.2010.17.20.
|
[14]
|
C. Kraaikamp, A new class of continued fraction expansions, Acta Arith., 57 (1991), 1-39.
doi: 10.4064/aa-57-1-1-39.
|
[15]
|
C. Kraaikamp, T. A. Schmidt and I. Smeets, Natural extensions for $\alpha$-Rosen continued fractions, J. Math. Soc. Japan, 62 (2010), 649-671.
|
[16]
|
C. Kraaikamp, T. A. Schmidt and W. Steiner, Natural extensions and entropy of $\alpha$-continued fractions, Nonlinearity, 25 (2012), 2207-2243.
doi: 10.1088/0951-7715/25/8/2207.
|
[17]
|
N. Langeveld, Matching, entropy, holes and expansions, PhD thesis, Leiden Universtity, 2019, https://hdl.handle.net/1887/81488.
|
[18]
|
L. Luzzi and S. Marmi, On the entropy of Japanese continued fractions, Discrete Contin. Dyn. Syst., 20 (2008), 673-711.
doi: 10.3934/dcds.2008.20.673.
|
[19]
|
P. Moussa, A. Cassa and S. Marmi, Continued fractions and Brjuno functions, Continued fractions and geometric function theory (CONFUN) (Trondheim, 1997), J. Comput. Appl. Math., 105 (1999), 403-415.
doi: 10.1016/S0377-0427(99)00029-1.
|
[20]
|
H. Nakada, Metrical theory for a class of continued fraction transformations and their natural extentions, Tokyo J. Math., 4 (1981), 399-426.
doi: 10.3836/tjm/1270215165.
|
[21]
|
H. Nakada and R. Natsui, The non-monotonicity of the entropy of $\alpha$-continued fraction transformations, Nonlinearity, 6 (2008), 1207-1225.
doi: 10.1088/0951-7715/21/6/003.
|
[22]
|
G. J. Rieger, On the metrical theory of continued fractions with odd partial quotients, Topics in Classical Number Theory, 1/2, (Budapest, 1981), 1371-1418; Colloq. Math. Soc. János Bolyai, North-Holland, Amsterdam-New York, 34 (1984).
|
[23]
|
V. A. Rohlin, Exact endomorphisms of a Lebesgue space, Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 499-530.
|
[24]
|
D. Rosen, A class of continued fractions associated with certain properly discontinuous groups, Duke Math. J., 21 (1954), 549-563.
|
[25]
|
F. Schweiger, Continued fractions with odd and even partial quotients, Arbeitbericht Mathematisches Institut Salzburg, 4 (1982), 59-70.
|
[26]
|
F. Schweiger, On the approximation by continued fractions with odd and even partial quotients, Arbeitbericht Mathematisches Institut Salzburg, 1/2 (1984), 105-114.
|
[27]
|
G. I. Sebe, Gauss' problem for the continued fraction with odd partial quotients, Rev. Roumaine Math. Pures Appl., 46 (2001), 839-852.
|
[28]
|
G. I. Sebe, On convergence rate in the Gauss-Kuzmin problem for grotesque continued fractions, Monatsh. Math., 133 (2001), 241-254.
doi: 10.1007/s006050170022.
|
[29]
|
S. Tanaka and S. Ito, On a family of continued fraction transformations and their ergodic properties, Tokyo J. Math., 4 (1981), 153-175.
doi: 10.3836/tjm/1270215745.
|