\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Concentration results for a singularly perturbed elliptic system with variable coefficients

  • *Corresponding author: Bhakti Bhusan Manna

    *Corresponding author: Bhakti Bhusan Manna 

The last author is supported by a Thesis fellowship from Ministry of Education, Govt. of India

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this article, we study the following Hamiltonian elliptic system with coefficients:

    $ \begin{align} \notag \left\{\begin{aligned} -\varepsilon^2\Delta u +c(x)u = b(x) |{v}|^{q-1}v, &\, \, \text{ and } -\varepsilon^2\Delta v +c(x)v = a(x) |{u}|^{p-1}u \quad\text{in } \Omega, \\ u>0, \ v>0 \text{ in } \Omega, &\, \, \text{ and }\quad\frac{ \partial u}{ \partial\nu} = 0 = \frac{ \partial v}{ \partial\nu}\quad \text{on } \partial\Omega, \end{aligned} \right. \end{align} $

    where $ \Omega $ is a smooth bounded domain in $ \mathbb{R}^n, n\ge 3 $. The coefficients $ a(x), b(x), $ and $ c(x) $ are smooth, positive, and bounded. We study the existence of point-concentrating solutions and the influence of the coefficients on their concentration profiles. As an application of this result, we establish the existence of higher-dimensional concentrating solutions for a class of elliptic systems.

    Mathematics Subject Classification: Primary: 35J47; Secondary: 35J57, 35J50.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. AbbondandoloP. Felmer and J. Molina, An estimate on the relative Morse index for strongly indefinite functionals, Electron. J. Diff. Eqns., Conf., 06 (2001), 1-11. 
    [2] A. Abbondandolo and J. Molina, Index estimates for strongly indefinite functionals, periodic orbits and homoclinic solutions of first order Hamiltonian systems, Calc. Var. Partial Differential Equations, 11 (2000), 395-430.  doi: 10.1007/s005260000046.
    [3] N. AckermannM. Clapp and A. Pistoia, Boundary clustered layers near the higher critical exponents, J. Differential Equations, 254 (2013), 4168-4193.  doi: 10.1016/j.jde.2013.02.015.
    [4] A. AmbrosettiA. Malchiodi and W.-M. Ni, Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres I, Comm. Math. Phys., 235 (2003), 427-466.  doi: 10.1007/s00220-003-0811-y.
    [5] A. AmbrosettiA. Malchiodi and W.-M. Ni, Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres II, Indiana Univ. Math. J., 53 (2004), 297-329.  doi: 10.1512/iumj.2004.53.2400.
    [6] A. I. Ávila and J. Yang, On the existence and shape of least energy solutions for some elliptic systems, J. Differential Equations, 191 (2003), 348-376.  doi: 10.1016/S0022-0396(03)00017-2.
    [7] D. BonheureE. M. dos Santos and H. Tavares, Hamiltonian elliptic systems: A guide to variational frameworks, Port. Math., 71 (2014), 301-395.  doi: 10.4171/PM/1954.
    [8] D. BonheureE. Serra and P. Tilli, Radial positive solutions of elliptic systems with Neumann boundary conditions, J. Funct. Anal., 265 (2013), 375-398.  doi: 10.1016/j.jfa.2013.05.027.
    [9] J. Byeon and J. Park, Singularly perturbed nonlinear elliptic problems on manifolds, Calc. Var. Partial Differential Equations, 24 (2005), 459-477.  doi: 10.1007/s00526-005-0339-4.
    [10] M. Clapp and J. Faya, Multiple solutions to anisotropic critical and supercritical problems in symmetric domains, Progr. Nonlinear Differential Equations Appl., 86 (2015), 99-120.  doi: 10.1007/978-3-319-19902-3_8.
    [11] M. Clapp and B. B. Manna, Double- and single-layered sign-changing solutions to a singularly perturbed elliptic equation concentrating at a single sphere, Comm. Partial Differential Equations, 42 (2017), 474-490.  doi: 10.1080/03605302.2017.1279627.
    [12] D. G. de Figueiredo, Semilinear elliptic systems: A survey of superlinear problems, Resenhas, 2 (1996), 373-391. 
    [13] D. G. de Figueiredo and J. Yang, Decay, symmetry and existence of solutions of semilinear elliptic systems, Nonlinear Anal, 33 (1998), 211-234.  doi: 10.1016/S0362-546X(97)00548-8.
    [14] M. A. del Pino, A priori estimates and applications to existence-nonexistence for a semilinear elliptic system, Indiana Univ. Math. J., 43 (1994), 77-129.  doi: 10.1512/iumj.1994.43.43005.
    [15] C.-S. LinW.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, Journal of Differential Equations, 72 (1988), 1-27.  doi: 10.1016/0022-0396(88)90147-7.
    [16] B. B. MannaB. RufA. K. Sahoo and P. N. Srikanth, Hopf reduction and orbit concentrating solutions for a class of superlinear elliptic equations, J. Funct. Anal., 282 (2022), 109459.  doi: 10.1016/j.jfa.2022.109459.
    [17] B. B. Manna and P. C. Srikanth, On the solutions of a singular elliptic equation concentrating on a circle, Adv. Nonlinear Anal., 3 (2014), 141-155.  doi: 10.1515/anona-2013-0028.
    [18] W.-M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281.  doi: 10.1215/S0012-7094-93-07004-4.
    [19] W.-M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851.  doi: 10.1002/cpa.3160440705.
    [20] F. Pacella and P. N. Srikanth, A reduction method for semilinear elliptic equations and solutions concentrating on spheres, J. Funct. Anal., 266 (2014), 6456-6472.  doi: 10.1016/j.jfa.2014.03.004.
    [21] A. Pistoia and M. Ramos, Locating the peaks of the least energy solutions to an elliptic system with Neumann boundary conditions, J. Differential Equations, 201 (2004), 160-176.  doi: 10.1016/j.jde.2004.02.003.
    [22] M. Ramos and H. Tavares, Solutions with multiple spike patterns for an elliptic system, Calc. Var. Partial Differential Equations, 31 (2008), 1-25.  doi: 10.1007/s00526-007-0103-z.
    [23] M. Ramos and J. Yang, Spike-layered solutions for an elliptic system with Neumann boundary conditions, Trans. Amer. Math. Soc., 357 (2005), 3265-3284.  doi: 10.1090/S0002-9947-04-03659-1.
    [24] B. Ruf and P. N. Srikanth, Singularly perturbed elliptic equations with solutions concentrating on a 1-dimensional orbit, J. Eur. Math. Soc., 12 (2010), 413-427.  doi: 10.4171/JEMS/203.
    [25] B. Ruf and P. N. Srikanth, Concentration on Hopf-fibres for singularly perturbed elliptic equations, J. Funct. Anal., 267 (2014), 2353-2370.  doi: 10.1016/j.jfa.2014.07.018.
    [26] B. Sirakov, On the existence of solutions of Hamiltonian elliptic systems in $R^N$, Adv. Differential Equations, 5 (2000), 1445-1464. 
    [27] M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.
    [28] J. C. Wood, Harmonic Morphisms between Riemannian Manifolds, In Modern Trends in Geometry and Topology, Univ. Press, 2006.
    [29] J. Zhang and J. M. do Ó, Spiked vector solutions of coupled Schrödinger systems with critical exponent and solutions concentrating on spheres, Calc. Var. Partial Differential Equations, 58 (2019), Paper No. 98, 33 pp. doi: 10.1007/s00526-019-1540-1.
  • 加载中
SHARE

Article Metrics

HTML views(1647) PDF downloads(212) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return