\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Evolution of the radius of analyticity for the generalized Benjamin equation

  • *Corresponding author: Mahendra Panthee

    *Corresponding author: Mahendra Panthee

The first author is supported by FAPESP, Brazil (#2021/04999-9).
The second author is supported by FAPESP, Brazil (#2020/14833-8) and CNPq, Brazil (#307790/2020- 7).

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this work we consider the initial value problem (IVP) for the generalized Benjamin equation

    $ \begin{equation} \begin{cases} \partial_t u-l\mathcal{H} \partial_x^2u-\partial_x^3u+u^p\partial_xu = 0, \quad x,\; t\in \mathbb{R},\; p\geq 1, \\ u(x,0) = u_0(x), \end{cases} \;\;\;\;\;\;\;\;\;(1)\end{equation} $

    where $ u = u(x,t) $ is a real valued function, $ 0<l<1 $ and $ \mathcal{H} $ is the Hilbert transform. This model was introduced by Benjamin [3] and describes unidirectional propagation of long waves in a two-fluid system where the lower fluid with greater density is infinitely deep and the interface is subject to capillarity.

    We prove that the local solution to the IVP (1) for given data in the spaces of functions analytic on a strip around the real axis continue to be analytic without shrinking the width of the strip in time. We also study the evolution in time of the radius of spatial analyticity and show that it can decrease as the time advances. Finally, we present an algebraic lower bound on the possible rate of decrease in time of the uniform radius of spatial analyticity.

    Mathematics Subject Classification: Primary: 35A20, 35Q53, 35Q35; Secondary: 35Q55, 35A20, 35Q53, 35B40, 35Q35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] R. F. BarostichiR. O. Figueira and A. A. Himonas, Well-posedness of the good Boussinesq equation in analytic Gevrey spaces and time regularity, J. Differential Equations, 267 (2019), 3181-3198.  doi: 10.1016/j.jde.2019.04.001.
    [2] R. BarostichiR. O. Figueira and A. A. Himonas, The modified KdV equation with higher dispersion in Sobolev and analytic spaces on the line, J. Evol. Equ., 21 (2021), 2213-2237.  doi: 10.1007/s00028-021-00679-1.
    [3] T. B. Benjamin, A new kind of solitary waves, J. Fluid Mech., 245 (1992), 401-411.  doi: 10.1017/S002211209200051X.
    [4] J. L. BonaZ. Grujić and H. Kalisch, Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation, Ann Inst. H. Poincaré C Anal. Non Linéaire, 22 (2005), 783-797.  doi: 10.1016/j.anihpc.2004.12.004.
    [5] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part Ⅱ: The KdV-equation, Geometric and Functional Analysis, 3 (1993), 209-262.  doi: 10.1007/BF01895688.
    [6] W. ChenZ. Guo and J. Xiao, Sharp well-posedness for the Benjamin equation, Nonlinear Anal., 74 (2011), 6209-6230.  doi: 10.1016/j.na.2011.06.002.
    [7] W. Chen and J. Xiao, A sharp bilinear estimate for the Bourgain-type space with application to the Benjamin equation, Comm. Partial Differential Equations, 35 (2010), 1739-1762.  doi: 10.1080/03605302.2010.507688.
    [8] R. O. Figueira and A. A. Himonas, Lower bounds on the radius of analyticity for a system of modified KdV equations, J. Math. Anal. Appl., 497 (2021), 124917.  doi: 10.1016/j.jmaa.2020.124917.
    [9] R. Figueira, A. A. Himonas and F. Yan, A higher dispersion KdV equation on the line, Nonlinear Anal., 199 (2020), 112055. doi: 10.1016/j.na.2020.112055.
    [10] C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359-369.  doi: 10.1016/0022-1236(89)90015-3.
    [11] Z. Grujić and H. Kalisch, Gevrey regularity for a class of water-wave models, Nonlin. Anal., 71 (2009), 1160-1170.  doi: 10.1016/j.na.2008.11.047.
    [12] Z. Grujić and H. Kalisch, Local well-posedness of the generalized Korteweg-De Vries equation in spaces of analytic functions, Differential and Integral Equations, 15 (2002), 1325-1334. 
    [13] H. HannahA. A. Himonas and G. Petronilho, Gevrey regularity of the periodic gKdV equation, J. Differential Equations, 250 (2011), 2581-2600.  doi: 10.1016/j.jde.2010.12.020.
    [14] A. A. HimonasH. Kalisch and S. Selberg, On persistence of spatial analyticity for the dispersion-generalized periodic KdV equation, Nonlinear Anal. Real World Appl., 38 (2017), 35-48.  doi: 10.1016/j.nonrwa.2017.04.003.
    [15] A. A. Himonas and G. Petronilho, Analytic well-posedness of periodic gKdV, J. Differential Equations, 253 (2012), 3101-3112.  doi: 10.1016/j.jde.2012.08.024.
    [16] H. KozonoT. Ogawa and H. Tanisaka, Well-posedness for the Benjamin equations, Journal of the Korean Mathematical Society, 38 (2001), 1205-1234. 
    [17] F. Linares, $L^{2}$-global well-posedness of the initial value problem associated to the Benjamin equation, J. Differential Equations, 152 (1999), 377-393.  doi: 10.1006/jdeq.1998.3530.
    [18] S. Selberg, Spatial analyticity of solutions to nonlinear dispersive PDE, Non-linear partial differential equations, mathematical physics, and stochastic analysis, 437-454, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2018.
    [19] S. Selberg and D. O. da Silva, Lower Bounds on the Radius of a Spatial Analyticity for the KdV Equation, Ann. Henri Poincarè, 18 (2017), 1009-1023.  doi: 10.1007/s00023-016-0498-1.
    [20] S. Selberg and A. Tesfahun, On the radius of spatial analyticity for the quartic generalized KdV equation, Ann. Henri Poincarè, 18 (2017), 3553-3564.  doi: 10.1007/s00023-017-0605-y.
    [21] S. Shi and J. Li, Local well-posedness for periodic Benjamin equation with small data, Boundary value Problems a Springer Open Journal, 60 (2015). doi: 10.1186/s13661-015-0322-8.
  • 加载中
SHARE

Article Metrics

HTML views(1791) PDF downloads(64) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return