\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Wellposedness of an elliptic-dispersive coupled system for MEMS

  • *Corresponding author: Heiko Gimperlein

    *Corresponding author: Heiko Gimperlein 
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this work, we study the local wellposedness of the solution to a nonlinear elliptic-dispersive coupled system which serves as a model for a Micro-Electro-Mechanical System (MEMS). A simple electrostatically actuated MEMS capacitor device consists of two parallel plates separated by a gas-filled thin gap. The nonlinear elliptic-dispersive coupled system modelling the device combines a linear elliptic equation for the gas pressure with a semilinear dispersive equation for the gap width. We show the local-in-time existence of strict solutions for the system, by combining elliptic regularity results for the elliptic equation, Lipschitz continuous dependence of its solution on that of the dispersive equation, and then local-in-time existence for a resulting abstract dispersive problem. Semigroup approaches are key to solve the abstract dispersive problem.

    Mathematics Subject Classification: Primary: 35M33; Secondary: 35G61, 35D30, 74F10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. Bao and H. Yang, Squeeze film air damping in MEMS, Sensors and Actuators A: Physical, 136 (2007), 3-27.  doi: 10.1016/j.sna.2007.01.008.
    [2] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, volume 194., Springer Science and Business Media, 1999.
    [3] P. Esposito and N. Ghoussoub, Uniqueness of solutions for an elliptic equation modeling MEMS, Methods and Applications of Analysis, 15 (2008), 341-354.  doi: 10.4310/MAA.2008.v15.n3.a6.
    [4] P. Esposito, N. Ghoussoub and Y. Guo, Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS, volume 20., American Mathematical Soc., 2010. doi: 10.1090/cln/020.
    [5] L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998. doi: 10.1090/gsm/019.
    [6] H. GimperleinR. He and A. A. Lacey, Quenching for a semi-linear wave equation for micro-electro-mechanical systems, Proceedings of the Royal Society A, 478 (2022), 20220490.  doi: 10.1098/rspa.2022.0490.
    [7] Y. Guo, Dynamical solutions of singular wave equations modeling electrostatic MEMS, SIAM Journal on Applied Dynamical Systems, 9 (2010), 1135-1163. doi: 10.1137/09077117X.
    [8] P. HowellG. Kozyreff and  J. OckendonApplied Solid Mechanics, Cambridge University Press, 2009. 
    [9] D. Hundertmark, M. Meyries, L. Machinek and R. Schnaubelt, Operator semigroups and dispersive equations, In 16th Internet Seminar on Evolution Equations, available at https://www.math.kit.edu/iana3/~schnaubelt/media/isem16-skript.pdf, 2013.
    [10] P. Laurençot and C. Walker, Some singular equations modeling MEMS, Bulletin of the American Mathematical Society, 54 (2016), 437-479.  doi: 10.1090/bull/1563.
    [11] F. Lin and Y. Yang, Nonlinear non-local elliptic equation modelling electrostatic actuation, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463 (2007), 1323-1337.  doi: 10.1098/rspa.2007.1816.
    [12] H. Ockendon and J. R. Ockendon, Viscous Flow, volume 13. Cambridge University Press, 1995. doi: 10.1017/CBO9781139174206.
    [13] J. A. Pelesko and  D. H. BernsteinModeling MEMS and NEMS, CRC Press, 2007.  doi: 10.1201/9781420035292.
    [14] T. J. Simmons, Mathematical Analysis of a Gas and Plate Model for a Micro-Electro-Mechanical Systems (MEMS) Capacitor, PhD thesis, Heriot-Watt University, June 2017.
    [15] T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, Number 106. American Mathematical Soc., 2006. doi: 10.1090/cbms/106.
    [16] M. VersaciG. AngiulliL. Fattorusso and A. Jannelli, On the uniqueness of the solution for a semi-linear elliptic boundary value problem of the membrane MEMS device for reconstructing the membrane profile in absence of ghost solutions, International Journal of Non-Linear Mechanics, 109 (2019), 24-31.  doi: 10.1016/j.ijnonlinmec.2018.10.014.
  • 加载中
SHARE

Article Metrics

HTML views(1473) PDF downloads(87) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return