\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Minimality of $ \mathfrak{B} $-free systems in number fields

Research supported by Narodowe Centrum Nauki UMO-2019/33/B/ST1/00364

Abstract / Introduction Full Text(HTML) Figure(0) / Table(1) Related Papers Cited by
  • Let $ K $ be a finite extension of $ \mathbb{Q} $ and $ \mathcal{O}_K $ be its ring of integers. Let $ \mathfrak{B} $ be a primitive collection of ideals in $ \mathcal{O}_K $. We show that any $ \mathfrak{B} $-free system is essentially minimal. Moreoever, a $ \mathfrak{B} $-free system is minimal if and only if the characteristic function of the $ \mathfrak{B} $-free numbers is a Toeplitz sequence. Equivalently, there are no ideal $ \mathfrak{d} $ and no infinite pairwise coprime collection of ideals $ \mathcal{C} $ such that $ \mathfrak{d} \mathcal{C}\subseteq\mathfrak{B} $. Moreover, we find a period structure in the Toeplitz case. Last but not least, we describe the restrictions on the cosets of ideals contained in unions of ideals.

    Mathematics Subject Classification: Primary: 37B10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Results in higher dimension vs. in dimension one

    $ \mathcal{O}_K $ $ {\mathbb{Z}} $
    Essential minimality Theorem A Theorem 3.3
    Minimality characterization Theorem B Theorem 3.7
    Essence of being Toeplitz Theorem C Theorem 3.9
    Non-periodic positions on $ \eta $ Proposition D Proposition 3.16
    Period structure Theorem E Theorem 3.17
    APs in "Toeplitz sets of multiples" Theorem F Theorem 3.14
     | Show Table
    DownLoad: CSV
  • [1] E. H. El AbdalaouiM. Lemańczyk and T. de la Rue, A dynamical point of view on the set of $\mathcal{B}$-free integers, Int. Math. Res. Not. IMRN, 15 (2015), 7258-7286.  doi: 10.1093/imrn/rnu164.
    [2] A. I. Borevich and I. R. Shafarevich, Number Theory, Pure and Applied Mathematics, Vol. 20. Academic Press, New York-London, 1966. Translated from the Russian by Newcomb Greenleaf.
    [3] M. I. Cortez, $\mathbb{Z}^d$ Toeplitz arrays, Discrete Contin. Dyn. Syst., 15 (2006), 859-881.  doi: 10.3934/dcds.2006.15.859.
    [4] M. I. Cortez and S. PetiteG-odometers and their almost one-to-one extensions, J. Lond. Math. Soc., 78 (2008), 1-20.  doi: 10.1112/jlms/jdn002.
    [5] H. Davenport and P. Erdös, On sequences of positive integers, J. Indian Math. Soc. (N.S.), 15 (1951), 19-24. 
    [6] T. Downarowicz, Survey of odometers and Toeplitz flows, In Algebraic and Topological Dynamics, volume 385 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2005, 7-37. doi: 10.1090/conm/385/07188.
    [7] A. Dymek, Automorphisms of Toeplitz $\mathcal{B}$-free systems, Bull. Pol. Acad. Sci. Math., 65 (2017), 139-152.  doi: 10.4064/ba8115-10-2017.
    [8] A. Dymek, Proximality of multidimensional $\mathcal{B}$-free systems, Discrete Contin. Dyn. Syst., 41 (2021), 3709-3724.  doi: 10.3934/dcds.2021013.
    [9] A. Dymek, S. Kasjan and G. Keller, Automorphisms of $\mathcal{B}$-free Toeplitz systems, https://arXiv.org/abs/2111.10679.
    [10] A. DymekS. KasjanJ. Kułaga-Przymus and M. Lemańczyk, $\mathcal{B}$-free sets and dynamics, Trans. Amer. Math. Soc., 370 (2018), 5425-5489.  doi: 10.1090/tran/7132.
    [11] R. Ellis, Distal transformation groups, Pacific J. Math., 8 (1958), 401-405.  doi: 10.2140/pjm.1958.8.401.
    [12] E. Følner, Generalization of a theorem of Bogolioùboff to topological abelian groups. With an appendix on Banach mean values in non-abelian groups, Math. Scand., 2 (1954), 5-18.  doi: 10.7146/math.scand.a-10389.
    [13] E. Følner, On groups with full Banach mean value, Math. Scand., 3 (1955), 243-254.  doi: 10.7146/math.scand.a-10442.
    [14] M. Hall, Jr, A topology for free groups and related groups, Ann. of Math., 52 (1950), 127-139.  doi: 10.2307/1969513.
    [15] R. R. HallSets of Multiples, volume 118 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1996.  doi: 10.1017/CBO9780511566011.
    [16] K. Jacobs and M. Keane, 0-1-sequences of Toeplitz type, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 13 (1969), 123-131.  doi: 10.1007/BF00537017.
    [17] S. KasjanG. Keller and M. Lemańczyk, Dynamics of $\mathcal{B}$-free sets: A view through the window, Int. Math. Res. Not. IMRN, (2019), 2690-2734.  doi: 10.1093/imrn/rnx196.
    [18] G. Keller, Generalized heredity in $\mathcal{B}$-free systems, Stoch. Dyn., 21 (2021), Paper No. 2140008, 19 pp. doi: 10.1142/S0219493721400086.
    [19] J. Kułaga-Przymus and M. D. Lemańczyk, Hereditary subshifts whose measure of maximal entropy does not have the Gibbs property, Colloq. Math., 166 (2021), 107-127.  doi: 10.4064/cm8223-11-2020.
    [20] S. Lang, Algebra, volume 211 of Graduate Texts in Mathematics, Springer-Verlag, New York, third edition, 2002. doi: 10.1007/978-1-4613-0041-0.
    [21] L. Mirsky, Note on an asymptotic formula connected with r-free integers, Quart. J. Math. Oxford Ser., 18 (1947), 178-182.  doi: 10.1093/qmath/os-18.1.178.
    [22] L. Mirsky, Arithmetical pattern problems relating to divisibility by rth powers, Proc. London Math. Soc., 50 (1949), 497-508.  doi: 10.1112/plms/s2-50.7.497.
    [23] L. Mirsky, Summation formulae involving arithmetic functions, Duke Math. J., 16 (1949), 261-272.  doi: 10.1215/S0012-7094-49-01625-7.
    [24] J. Neukirch, Algebraic Number Theory, volume 322 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder. doi: 10.1007/978-3-662-03983-0.
    [25] P. Sarnak, Three lectures on the Möbius function, randomness and dynamics, http://publications.ias.edu/sarnak/.
    [26] S. Williams, Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrsch. Verw. Gebiete, 67 (1984), 95-107.  doi: 10.1007/BF00534085.
  • 加载中

Tables(1)

SHARE

Article Metrics

HTML views(1611) PDF downloads(64) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return