[1]
|
E. H. El Abdalaoui, M. Lemańczyk and T. de la Rue, A dynamical point of view on the set of $\mathcal{B}$-free integers, Int. Math. Res. Not. IMRN, 15 (2015), 7258-7286.
doi: 10.1093/imrn/rnu164.
|
[2]
|
A. I. Borevich and I. R. Shafarevich, Number Theory, Pure and Applied Mathematics, Vol. 20. Academic Press, New York-London, 1966. Translated from the Russian by Newcomb Greenleaf.
|
[3]
|
M. I. Cortez, $\mathbb{Z}^d$ Toeplitz arrays, Discrete Contin. Dyn. Syst., 15 (2006), 859-881.
doi: 10.3934/dcds.2006.15.859.
|
[4]
|
M. I. Cortez and S. Petite, G-odometers and their almost one-to-one extensions, J. Lond. Math. Soc., 78 (2008), 1-20.
doi: 10.1112/jlms/jdn002.
|
[5]
|
H. Davenport and P. Erdös, On sequences of positive integers, J. Indian Math. Soc. (N.S.), 15 (1951), 19-24.
|
[6]
|
T. Downarowicz, Survey of odometers and Toeplitz flows, In Algebraic and Topological Dynamics, volume 385 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2005, 7-37.
doi: 10.1090/conm/385/07188.
|
[7]
|
A. Dymek, Automorphisms of Toeplitz $\mathcal{B}$-free systems, Bull. Pol. Acad. Sci. Math., 65 (2017), 139-152.
doi: 10.4064/ba8115-10-2017.
|
[8]
|
A. Dymek, Proximality of multidimensional $\mathcal{B}$-free systems, Discrete Contin. Dyn. Syst., 41 (2021), 3709-3724.
doi: 10.3934/dcds.2021013.
|
[9]
|
A. Dymek, S. Kasjan and G. Keller, Automorphisms of $\mathcal{B}$-free Toeplitz systems, https://arXiv.org/abs/2111.10679.
|
[10]
|
A. Dymek, S. Kasjan, J. Kułaga-Przymus and M. Lemańczyk, $\mathcal{B}$-free sets and dynamics, Trans. Amer. Math. Soc., 370 (2018), 5425-5489.
doi: 10.1090/tran/7132.
|
[11]
|
R. Ellis, Distal transformation groups, Pacific J. Math., 8 (1958), 401-405.
doi: 10.2140/pjm.1958.8.401.
|
[12]
|
E. Følner, Generalization of a theorem of Bogolioùboff to topological abelian groups. With an appendix on Banach mean values in non-abelian groups, Math. Scand., 2 (1954), 5-18.
doi: 10.7146/math.scand.a-10389.
|
[13]
|
E. Følner, On groups with full Banach mean value, Math. Scand., 3 (1955), 243-254.
doi: 10.7146/math.scand.a-10442.
|
[14]
|
M. Hall, Jr, A topology for free groups and related groups, Ann. of Math., 52 (1950), 127-139.
doi: 10.2307/1969513.
|
[15]
|
R. R. Hall, Sets of Multiples, volume 118 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1996.
doi: 10.1017/CBO9780511566011.
|
[16]
|
K. Jacobs and M. Keane, 0-1-sequences of Toeplitz type, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 13 (1969), 123-131.
doi: 10.1007/BF00537017.
|
[17]
|
S. Kasjan, G. Keller and M. Lemańczyk, Dynamics of $\mathcal{B}$-free sets: A view through the window, Int. Math. Res. Not. IMRN, (2019), 2690-2734.
doi: 10.1093/imrn/rnx196.
|
[18]
|
G. Keller, Generalized heredity in $\mathcal{B}$-free systems, Stoch. Dyn., 21 (2021), Paper No. 2140008, 19 pp.
doi: 10.1142/S0219493721400086.
|
[19]
|
J. Kułaga-Przymus and M. D. Lemańczyk, Hereditary subshifts whose measure of maximal entropy does not have the Gibbs property, Colloq. Math., 166 (2021), 107-127.
doi: 10.4064/cm8223-11-2020.
|
[20]
|
S. Lang, Algebra, volume 211 of Graduate Texts in Mathematics, Springer-Verlag, New York, third edition, 2002.
doi: 10.1007/978-1-4613-0041-0.
|
[21]
|
L. Mirsky, Note on an asymptotic formula connected with r-free integers, Quart. J. Math. Oxford Ser., 18 (1947), 178-182.
doi: 10.1093/qmath/os-18.1.178.
|
[22]
|
L. Mirsky, Arithmetical pattern problems relating to divisibility by rth powers, Proc. London Math. Soc., 50 (1949), 497-508.
doi: 10.1112/plms/s2-50.7.497.
|
[23]
|
L. Mirsky, Summation formulae involving arithmetic functions, Duke Math. J., 16 (1949), 261-272.
doi: 10.1215/S0012-7094-49-01625-7.
|
[24]
|
J. Neukirch, Algebraic Number Theory, volume 322 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder.
doi: 10.1007/978-3-662-03983-0.
|
[25]
|
P. Sarnak, Three lectures on the Möbius function, randomness and dynamics, http://publications.ias.edu/sarnak/.
|
[26]
|
S. Williams, Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrsch. Verw. Gebiete, 67 (1984), 95-107.
doi: 10.1007/BF00534085.
|