We prove that aperiodic and linearly repetitive Lorentz gases with finite horizon are not mixing with exponential or stretched exponential speed in any dimension for any class of Hölder observables under a technical assumption known to hold in all known examples. We also bound the polynomial speed of mixing for observables in the Hölder space $ H_{\alpha} $ depending on $ \alpha $.
Citation: |
[1] | J. Aliste-Prieto and D. Coronel, Tower systems for linearly repetitive Delone sets, Ergodic Theory Dynam. Systems, 31 (2011), 1595-1618. doi: 10.1017/S0143385710000507. |
[2] | J. Aliste-Prieto, D. Coronel, M. I. Cortez, F. Durand and S. Petite, Linearly repetitive Delone sets, In Mathematics of Aperiodic Order, volume 309 of Progr. Math., Birkhäuser/Springer, Basel, 2015,195-222. doi: 10.1007/978-3-0348-0903-0_6. |
[3] | P. Bálint and I. P. Tóth, Exponential decay of correlations in multi-dimensional dispersing billiards, Ann. Henri Poincaré, 9 (2008), 1309-1369. doi: 10.1007/s00023-008-0389-1. |
[4] | J. Bellissard, R. Benedetti and J.-M. Gambaudo, Spaces of tilings, finite telescopic approximations and gap-labeling, Comm. Math. Phys., 261 (2006), 1-41. doi: 10.1007/s00220-005-1445-z. |
[5] | R. Bowen and B. Marcus, Unique ergodicity for horocycle foliations, Israel J. Math., 26 (1977), 43-67. doi: 10.1007/BF03007655. |
[6] | L. A. Bunimovich, Ya. G. Sinaĭ and N. I. Chernov, Markov partitions for two-dimensional hyperbolic billiards, Uspekhi Mat. Nauk, 45 (1990), 97-134. doi: 10.1070/RM1990v045n03ABEH002355. |
[7] | N. Chernov and R. Markarian, Chaotic Billiards, volume 127 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2006. doi: 10.1090/surv/127. |
[8] | M. I. Cortez and A. Navas, Some examples of repetitive, nonrectifiable Delone sets, Geom. Topol., 20 (2016), 1909-1939. doi: 10.2140/gt.2016.20.1909. |
[9] | C. P. Dettmann, Diffusion in the Lorentz gas, Commun. Theor. Phys. (Beijing), 62 (2014), 521-540. doi: 10.1088/0253-6102/62/4/10. |
[10] | D. Dolgopyat and P. Nándori, Infinite measure mixing for some mechanical systems, Adv. Math., 410 (2022), part B, Paper No. 108757, 56 pp. doi: 10.1016/j.aim.2022.108757. |
[11] | F. Golse, Recent results on the periodic Lorentz gas, In Nonlinear Partial Differential Equations, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer Basel AG, Basel, 2012, 39-99. doi: 10.1007/978-3-0348-0191-1_2. |
[12] | A. Haynes, A. Julien, H. Koivusalo and J. Walton, Statistics of patterns in typical cut and project sets, Ergodic Theory Dynam. Systems, 39 (2019), 3365-3387. doi: 10.1017/etds.2018.15. |
[13] | A. Haynes, H. Koivusalo and J. Walton, A characterization of linearly repetitive cut and project sets, Nonlinearity, 31 (2018), 515-539. doi: 10.1088/1361-6544/aa9528. |
[14] | J. C. Lagarias and P. A. B. Pleasants, Repetitive Delone sets and quasicrystals, Ergodic Theory Dynam. Systems, 23 (2003), 831-867. doi: 10.1017/S0143385702001566. |
[15] | J.-Y. Lee, R. V. Moody and B. Solomyak, Pure point dynamical and diffraction spectra, Ann. Henri Poincaré, 3 (2002), 1003-1018. doi: 10.1007/s00023-002-8646-1. |
[16] | M. Lenci, On infinite-volume mixing, Comm. Math. Phys., 298 (2010), 485-514. doi: 10.1007/s00220-010-1043-6. |
[17] | J. Marklof, The low-density limit of the Lorentz gas: Periodic, aperiodic and random, In Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. III, Kyung Moon Sa, Seoul, 2014,623-646. |
[18] | J. Marklof and A. Strömbergsson, Free path lengths in quasicrystals, Comm. Math. Phys., 330 (2014), 723-755. doi: 10.1007/s00220-014-2011-3. |
[19] | S. Schmieding and R. Treviño, Random substitution tilings and deviation phenomena, Discrete Contin. Dyn. Syst., 41 (2021), 3869-3902. doi: 10.3934/dcds.2021020. |
[20] | D. Szász, Some challenges in the theory of (semi)-dispersing billiards, Nonlinearity, 21 (2008), T187-T193. doi: 10.1088/0951-7715/21/10/T02. |
[21] | D. Szász, Multidimensional hyperbolic billiards, In Dynamical Systems, Ergodic Theory, and Probability: In Memory of Kolya Chernov, volume 698 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2017,201-220. doi: 10.1090/conm/698/14028. |
[22] | R. Treviño and A. Zelerowicz, Statistical properties of lorentz gases on aperiodic tilings, part 1, Comm. Math. Phys., 396 (2022), 1305-1338. doi: 10.1007/s00220-022-04493-9. |
[23] | J. J. Walton, A complete characterisation of linear repetitivity for cut and project sets with general polytopal windows, 2023. |
[24] | L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. (2), 147 (1998), 585-650. doi: 10.2307/120960. |
A trajectory in an aperiodic Lorentz gas