\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence analysis for a reaction-diffusion Cahn–Hilliard-type system with degenerate mobility and singular potential modeling biofilm growth

  • *Corresponding author: Ansgar Jüngel

    *Corresponding author: Ansgar Jüngel
Abstract / Introduction Full Text(HTML) Figure(4) / Table(1) Related Papers Cited by
  • The global existence of bounded weak solutions to a diffusion system modeling biofilm growth is proven. The equations consist of a reaction-diffusion equation for the substrate concentration and a fourth-order Cahn–Hilliard-type equation for the volume fraction of the biomass, considered in a bounded domain with no-flux boundary conditions. The main difficulties are coming from the degenerate diffusivity and mobility, the singular potential arising from a logarithmic free energy, and the nonlinear reaction rates. These issues are overcome by a truncation technique and a Browder–Minty trick to identify the weak limits of the reaction terms. The qualitative behavior of the solutions is illustrated by numerical experiments in one space dimension, using a BDF2 (second-order backward Differentiation Formula) finite-volume scheme.

    Mathematics Subject Classification: Primary: 35K35, 35K65, 35K67, 35Q92; Secondary: 92C17.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Biomass fraction $ u $ (top) and substrate concentration $ v $ (bottom) in test case $ 1 $ for our system (left) and the system of [26] (right)

    Figure 2.  Biomass $ u $ in test case $ 2 $ for our system (left) and the system of [26] (right)

    Figure 3.  Biomass $ u $ in test case $ 3 $ for our system (left) and the system of [26] (right)

    Figure 4.  Convergence in space (left) and convergence in time (right) at time $ T = 1 $

    Table 1.  Parameters used in the numerical simulations

    Symbol Parameter Value Unit
    $ D $ Diffusivity $ 10^{-10} $ m$ ^2 $ s$ ^{-1} $
    $ M' $ Mobility $ 2.5\cdot 10^{-8} $ s
    $ R_c $ Consumption rate $ 10^{-2} $ s$ ^{-1} $
    $ R_p $ Production rate $ 10^{-2} $ kg m$ ^{-3} $ s$ ^{-1} $
    $ K_v $ Half-saturation constant $ 10^{-4} $ kg m$ ^{-3} $
    $ \Gamma_1 $ Distortional energy $ 4\cdot 10^{-15} $ m$ ^4 $ s$ ^{-2} $
    $ \Gamma_2 $ Mixing free energy $ 4\cdot 10^{-6} $ m$ ^{2} $ s$ ^{-2} $
    $ N $ Polymerization parameter $ 10^{3} $
    $ \lambda $ Flory–Huggins parameter 0.55
    $ x_0 $ Characteristic length $ 10^{-4} $ m
    $ t_0 $ Characteristic time $ 10^2 $ s
    $ v_0 $ Characteristic concentration $ 10^{-3} $ kg m$ ^{-3} $
    $ k_BT $ Thermal energy at $ T=300 $ K $ 4\cdot 10^{-21} $ kg m$ ^2 $ s$ ^{-2} $
    $ \widetilde{K} $ Half-saturation constant for model of [26] $ 5\cdot 10^{-4} $
     | Show Table
    DownLoad: CSV
  • [1] D. AntonopoulouG. Karali and G. T. Kossioris, Asymptotics for a generalized Cahn–Hilliard equation with forcing terms, Discrete Cont. Dyn. Sys., 30 (2011), 1037-1054.  doi: 10.3934/dcds.2011.30.1037.
    [2] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. Ⅰ. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.  doi: 10.1063/1.1744102.
    [3] L. CherfilsA. Miranville and S. Zelik, On a generalized Cahn–Hilliard equation with biological applications, Discrete Cont. Dyn. Sys. B, 19 (2014), 2013-2026.  doi: 10.3934/dcdsb.2014.19.2013.
    [4] N. G. Cogan and J. P. Keener, The role of the biofilm matrix in structural development, Math. Med. Biol., 21 (2004), 147-166.  doi: 10.1093/imammb/21.2.147.
    [5] B. D'Acunto and L. Frunzo, Qualitative analysis and simulations of a free boundary problem for multispecies biofilm models, Math. Computer Model., 53 (2011), 1596-1606.  doi: 10.1016/j.mcm.2010.12.024.
    [6] B. D'Acunto, L. Frunzo, V. Luongo and M. R. Mattei, Free boundary approach for the attachment in the initial phase of multispecies biofilm growth, Z. Angew. Math. Phys., 70 (2019), no. 91, 16 pp. doi: 10.1007/s00033-019-1134-y.
    [7] E. S. DausA. Jüngel and A. Zurek, Convergence of a finite-volume scheme for a degenerate-singular cross-diffusion system for biofilms, IMA J. Numer. Anal., 41 (2021), 935-973.  doi: 10.1093/imanum/draa040.
    [8] M. Ebenbeck, Cahn–Hilliard–Brinkmann Models for Tumour Growth: Modelling, Analysis and Optimal Control, Dissertation, University of Regensburg, Germany, 2020. doi: 10.5283/epub.43376.
    [9] M. EbenbeckH. Garcke and R. Nürnberg, Cahn–Hilliard–Brinkmann systems for tumour growth, Discrete Cont. Dyn. Sys. S, 14 (2021), 3989-4033.  doi: 10.3934/dcdss.2021034.
    [10] H. G. EberlM. A. EfendievD. Wrzosek and A. Zhigun, Analysis of a degenerate biofilm model with a nutrient taxis term, Discrete Cont. Dyn. Sys., 34 (2014), 99-119.  doi: 10.3934/dcds.2014.34.99.
    [11] H. J. EberlD. F. Parker and M. C. M. van Loosdrecht, A new deterministic spatio-temporal continuum model for biofilm development, J. Theor. Medicine, 3 (2001), 161-175.  doi: 10.1080/10273660108833072.
    [12] M. A. Efendiev, H. J. Eberl and S. V. Zelik, Existence and longtime behavior of solutions of the nonlinear reaction-diffusion system arising in the modelling of biofilms, In: Nonlinear Diffusive Systems and Related Topics, Surikaisekikenkyusho Kokyuroku, 1258 (2002), 49-71.
    [13] B. O. EmereniniS. Sonner and H. J. Eberl, Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects, Math. Biosci. Eng., 14 (2017), 625-653.  doi: 10.3934/mbe.2017036.
    [14] C. M. Elliott and H. Garcke, On the Cahn–Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996), 404-423.  doi: 10.1137/S0036141094267662.
    [15] P. J. Flory, Thermodynamics of high polymer solutions, J. Chem. Phys., 10 (1942), 51-61.  doi: 10.1063/1.1723621.
    [16] A. FriedmanB. Hu and C. Xue, On a multiphase multicomponent model of biofilm growth, Arch. Ration. Mech. Anal., 211 (2014), 257-300.  doi: 10.1007/s00205-013-0665-1.
    [17] S. Frigeri, On a nonlocal Cahn–Hilliard/Navier–Stokes system with degenerate mobility and singular potential for incompressible fluids with different densities, Ann. Inst. H. Poincaré – Anal. Non Lin., 38 (2021), 647-687.  doi: 10.1016/j.anihpc.2020.08.005.
    [18] H. Garcke and K. F. Lam, Global weak solutions and asymptotic limits of a Cahn–Hilliard–Darcy system modelling tumour growth, AIMS Mathematics, 1 (2016), 318-360.  doi: 10.3934/Math.2016.3.318.
    [19] C. HelmerA. Jüngel and A. Zurek, Analysis of a finite-volume scheme for a single-species biofilm model, Appl. Numer. Math., 185 (2023), 386-405.  doi: 10.1016/j.apnum.2022.12.002.
    [20] M. L. Huggins, Solutions of long chain compounds, J. Chem. Phys., 9 (1941), 440.  doi: 10.1063/1.1750930.
    [21] A. Iuorio and S. Melchionna, Long-time behavior of a nonlocal Cahn–Hilliard equation with reaction, Discrete Cont. Dyn. Sys., 38 (2018), 3765-3788.  doi: 10.3934/dcds.2018163.
    [22] M. JurakI. Radišić and A. Žgaljić Keko, Two-phase two-component flow in porous media in low solubility regime, SIAM J. Math. Anal., 51 (2019), 2019-2052.  doi: 10.1137/18M1182206.
    [23] B. Perthame and A. Poulain, Relaxation of the Cahn–Hilliard equation with singular single-well potential and degenerate mobility, Europ. J. Appl. Math., 32 (2021), 89-112.  doi: 10.1017/S0956792520000054.
    [24] J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Math. Pura. Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.
    [25] Q. Wang and T. Zhang, Review of mathematical models for biofilms, Solid State Commun., 150 (2010), 1009-1022.  doi: 10.1016/j.ssc.2010.01.021.
    [26] Q. Wang and T. Zhang, Kinetic theories for biofilms, Discrete Cont. Dyn. Sys. B, 17 (2012), 1027-1059.  doi: 10.3934/dcdsb.2012.17.1027.
    [27] O. Wanner and W. Gujer, A multispecies biofilm model, Biotechnol. Bioengin., 28 (1986), 314-328.  doi: 10.1002/bit.260280304.
    [28] J.-X. Yin, On the existence of nonnegative continuous solutions of the Cahn–Hilliard equation, J. Differ. Eqs., 97 (1992), 310-327.  doi: 10.1016/0022-0396(92)90075-X.
    [29] T. Zhang, Modeling of biocide action against biofilm, Bull. Math. Biol., 74 (2012), 1427-1447.  doi: 10.1007/s11538-012-9719-z.
    [30] T. ZhangN. G. Cogan and Q. Wang, Phase-field models for biofilms. Ⅰ. Theory and 1-D simulations, SIAM J. Appl. Math., 69 (2008), 641-669.  doi: 10.1137/070691966.
    [31] T. ZhangN. Cogan and Q. Wang, Phase-field models for biofilms. Ⅱ. 2-D numerical simulations of biofilm-flow interaction, Commun. Comput. Phys., 4 (2008), 72-101. 
  • 加载中

Figures(4)

Tables(1)

SHARE

Article Metrics

HTML views(1591) PDF downloads(87) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return