[1]
|
D. Antonopoulou, G. Karali and G. T. Kossioris, Asymptotics for a generalized Cahn–Hilliard equation with forcing terms, Discrete Cont. Dyn. Sys., 30 (2011), 1037-1054.
doi: 10.3934/dcds.2011.30.1037.
|
[2]
|
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. Ⅰ. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.
doi: 10.1063/1.1744102.
|
[3]
|
L. Cherfils, A. Miranville and S. Zelik, On a generalized Cahn–Hilliard equation with biological applications, Discrete Cont. Dyn. Sys. B, 19 (2014), 2013-2026.
doi: 10.3934/dcdsb.2014.19.2013.
|
[4]
|
N. G. Cogan and J. P. Keener, The role of the biofilm matrix in structural development, Math. Med. Biol., 21 (2004), 147-166.
doi: 10.1093/imammb/21.2.147.
|
[5]
|
B. D'Acunto and L. Frunzo, Qualitative analysis and simulations of a free boundary problem for multispecies biofilm models, Math. Computer Model., 53 (2011), 1596-1606.
doi: 10.1016/j.mcm.2010.12.024.
|
[6]
|
B. D'Acunto, L. Frunzo, V. Luongo and M. R. Mattei, Free boundary approach for the attachment in the initial phase of multispecies biofilm growth, Z. Angew. Math. Phys., 70 (2019), no. 91, 16 pp.
doi: 10.1007/s00033-019-1134-y.
|
[7]
|
E. S. Daus, A. Jüngel and A. Zurek, Convergence of a finite-volume scheme for a degenerate-singular cross-diffusion system for biofilms, IMA J. Numer. Anal., 41 (2021), 935-973.
doi: 10.1093/imanum/draa040.
|
[8]
|
M. Ebenbeck, Cahn–Hilliard–Brinkmann Models for Tumour Growth: Modelling, Analysis and Optimal Control, Dissertation, University of Regensburg, Germany, 2020.
doi: 10.5283/epub.43376.
|
[9]
|
M. Ebenbeck, H. Garcke and R. Nürnberg, Cahn–Hilliard–Brinkmann systems for tumour growth, Discrete Cont. Dyn. Sys. S, 14 (2021), 3989-4033.
doi: 10.3934/dcdss.2021034.
|
[10]
|
H. G. Eberl, M. A. Efendiev, D. Wrzosek and A. Zhigun, Analysis of a degenerate biofilm model with a nutrient taxis term, Discrete Cont. Dyn. Sys., 34 (2014), 99-119.
doi: 10.3934/dcds.2014.34.99.
|
[11]
|
H. J. Eberl, D. F. Parker and M. C. M. van Loosdrecht, A new deterministic spatio-temporal continuum model for biofilm development, J. Theor. Medicine, 3 (2001), 161-175.
doi: 10.1080/10273660108833072.
|
[12]
|
M. A. Efendiev, H. J. Eberl and S. V. Zelik, Existence and longtime behavior of solutions of the nonlinear reaction-diffusion system arising in the modelling of biofilms, In: Nonlinear Diffusive Systems and Related Topics, Surikaisekikenkyusho Kokyuroku, 1258 (2002), 49-71.
|
[13]
|
B. O. Emerenini, S. Sonner and H. J. Eberl, Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects, Math. Biosci. Eng., 14 (2017), 625-653.
doi: 10.3934/mbe.2017036.
|
[14]
|
C. M. Elliott and H. Garcke, On the Cahn–Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996), 404-423.
doi: 10.1137/S0036141094267662.
|
[15]
|
P. J. Flory, Thermodynamics of high polymer solutions, J. Chem. Phys., 10 (1942), 51-61.
doi: 10.1063/1.1723621.
|
[16]
|
A. Friedman, B. Hu and C. Xue, On a multiphase multicomponent model of biofilm growth, Arch. Ration. Mech. Anal., 211 (2014), 257-300.
doi: 10.1007/s00205-013-0665-1.
|
[17]
|
S. Frigeri, On a nonlocal Cahn–Hilliard/Navier–Stokes system with degenerate mobility and singular potential for incompressible fluids with different densities, Ann. Inst. H. Poincaré – Anal. Non Lin., 38 (2021), 647-687.
doi: 10.1016/j.anihpc.2020.08.005.
|
[18]
|
H. Garcke and K. F. Lam, Global weak solutions and asymptotic limits of a Cahn–Hilliard–Darcy system modelling tumour growth, AIMS Mathematics, 1 (2016), 318-360.
doi: 10.3934/Math.2016.3.318.
|
[19]
|
C. Helmer, A. Jüngel and A. Zurek, Analysis of a finite-volume scheme for a single-species biofilm model, Appl. Numer. Math., 185 (2023), 386-405.
doi: 10.1016/j.apnum.2022.12.002.
|
[20]
|
M. L. Huggins, Solutions of long chain compounds, J. Chem. Phys., 9 (1941), 440.
doi: 10.1063/1.1750930.
|
[21]
|
A. Iuorio and S. Melchionna, Long-time behavior of a nonlocal Cahn–Hilliard equation with reaction, Discrete Cont. Dyn. Sys., 38 (2018), 3765-3788.
doi: 10.3934/dcds.2018163.
|
[22]
|
M. Jurak, I. Radišić and A. Žgaljić Keko, Two-phase two-component flow in porous media in low solubility regime, SIAM J. Math. Anal., 51 (2019), 2019-2052.
doi: 10.1137/18M1182206.
|
[23]
|
B. Perthame and A. Poulain, Relaxation of the Cahn–Hilliard equation with singular single-well potential and degenerate mobility, Europ. J. Appl. Math., 32 (2021), 89-112.
doi: 10.1017/S0956792520000054.
|
[24]
|
J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Math. Pura. Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360.
|
[25]
|
Q. Wang and T. Zhang, Review of mathematical models for biofilms, Solid State Commun., 150 (2010), 1009-1022.
doi: 10.1016/j.ssc.2010.01.021.
|
[26]
|
Q. Wang and T. Zhang, Kinetic theories for biofilms, Discrete Cont. Dyn. Sys. B, 17 (2012), 1027-1059.
doi: 10.3934/dcdsb.2012.17.1027.
|
[27]
|
O. Wanner and W. Gujer, A multispecies biofilm model, Biotechnol. Bioengin., 28 (1986), 314-328.
doi: 10.1002/bit.260280304.
|
[28]
|
J.-X. Yin, On the existence of nonnegative continuous solutions of the Cahn–Hilliard equation, J. Differ. Eqs., 97 (1992), 310-327.
doi: 10.1016/0022-0396(92)90075-X.
|
[29]
|
T. Zhang, Modeling of biocide action against biofilm, Bull. Math. Biol., 74 (2012), 1427-1447.
doi: 10.1007/s11538-012-9719-z.
|
[30]
|
T. Zhang, N. G. Cogan and Q. Wang, Phase-field models for biofilms. Ⅰ. Theory and 1-D simulations, SIAM J. Appl. Math., 69 (2008), 641-669.
doi: 10.1137/070691966.
|
[31]
|
T. Zhang, N. Cogan and Q. Wang, Phase-field models for biofilms. Ⅱ. 2-D numerical simulations of biofilm-flow interaction, Commun. Comput. Phys., 4 (2008), 72-101.
|