In this paper we prove a Liouville theorem for the Chern–Simons–Schrödinger equation. This result is consistent with the soliton resolution conjecture for initial data that does not lie in a weighted space. See [10] for the soliton resolution result in a weighted space.
Citation: |
[1] |
L. Bergé, A. de Bouard and J.-C. Saut, Blowing up time-dependent solutions of the planar, Chern-Simons gauged nonlinear Schrodinger equation, Nonlinearity, 8 (1995), 235-253.
doi: 10.1088/0951-7715/8/2/007.![]() ![]() ![]() |
[2] |
G. Dunne, Self-Dual Chern-Simons Theories, Volume 36, Springer Science & Business Media, Berlin, 2009.
doi: 10.1007/978-3-540-44777-1.![]() ![]() |
[3] |
H. Huh, Energy solution to the Chern-Simons-Schrödinger equation, Abstract and Applied Analysis, 2013, Hidawi, Art. ID 590653, 7 pp.
doi: 10.1155/2013/590653.![]() ![]() ![]() |
[4] |
R. Jackiw and S.-Y. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Physical Review D, 42 (1990), 3500-3513.
doi: 10.1103/PhysRevD.42.3500.![]() ![]() ![]() |
[5] |
R. Jackiw and S.-Y. Pi, Soliton solutions to the gauged nonlinear Schrödinger equation on the plane, Physical Review Letters, 64 (1990), 2969-2972.
doi: 10.1103/PhysRevLett.64.2969.![]() ![]() ![]() |
[6] |
R. Jackiw and S.-Y. Pi, Time-dependent Chern-Simons solitons and their quantization, Physical Review D, 44 (1991), 2524-2532.
doi: 10.1103/PhysRevD.44.2524.![]() ![]() ![]() |
[7] |
K. Kim and S. Kwon, On Pseudoconformal Blow-Up Solutions to the Self-Dual Chern-Simons-Schrödinger Equation: Existence, Uniqueness, and Instability, Mem. Amer. Math. Soc., 284 (2023), vi+128 pp, arXiv: 1909.01055.
doi: 10.1090/memo/1409.![]() ![]() ![]() |
[8] |
K. Kim and S. Kwon, Construction of blow-up manifolds to the equivariant self-dual Chern-Simons-Schrödinger equation, Ann. PDE, 9 (2023), Paper No. 6,129 pp, arXiv: 2009.02943.
doi: 10.1007/s40818-023-00147-8.![]() ![]() ![]() |
[9] |
K. Kim, S. Kwon and S.-J. Oh, Blow-up dynamics for smooth finite energy radial data solutions to the self-dual Chern-Simons-Schrödinger equation, preprint, 2020, arXiv: 2010.03252.
![]() |
[10] |
K. Kim, S. Kwon and S.-J. Oh, Soliton resolution for equivariant self-dual Chern-Simons-Schrödinger equation in weighted Sobolev class, preprint, 2022, arXiv: 2202.07314.
![]() |
[11] |
Z. M. Lim, Large data well-posedness in the energy space of the Chern–Simons–Schrödinger system, Journal of Differential Equations, 264 (2018), 2553-2597.
doi: 10.1016/j.jde.2017.10.026.![]() ![]() ![]() |
[12] |
Z. Li and B. Liu, On threshold solutions of the equivariant Chern–Simons–Schrödinger equation, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 39 (2022), 371–417. arXiv: 2010.09045.
doi: 10.4171/aihpc/10.![]() ![]() ![]() |
[13] |
B. Liu and P. Smith, Global wellposedness of the equivariant Chern–Simons–Schrödinger equation, Revista Matemática Iberoamericana, 32 (2016), 751-794.
doi: 10.4171/RMI/898.![]() ![]() ![]() |
[14] |
B. Liu, P. Smith and D. Tataru, Local wellposedness of Chern–Simons–Schrödinger, International Mathematics Research Notices, 2014 (2014), 6341-6398.
doi: 10.1093/imrn/rnt161.![]() ![]() ![]() |
[15] |
Y. Martel and F. Merle, A Liouville theorem for the critical generalized Korteweg–de Vries equation, Journal de Mathématiques Pures et Appliquées, 79 (2000), 339-425.
doi: 10.1016/S0021-7824(00)00159-8.![]() ![]() ![]() |
[16] |
F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Mathematical Journal, 69 (1993), 427-454.
doi: 10.1215/S0012-7094-93-06919-0.![]() ![]() ![]() |
[17] |
S.-J. Oh and F. Pusateri, Decay and scattering for the Chern–Simons–Schrödinger equations, International Mathematics Research Notices, 2015 (2015), 13122-13147.
doi: 10.1093/imrn/rnv093.![]() ![]() ![]() |