In this paper we prove a Liouville theorem for the Chern–Simons–Schrödinger equation. This result is consistent with the soliton resolution conjecture for initial data that does not lie in a weighted space. See [10] for the soliton resolution result in a weighted space.
Citation: |
[1] | L. Bergé, A. de Bouard and J.-C. Saut, Blowing up time-dependent solutions of the planar, Chern-Simons gauged nonlinear Schrodinger equation, Nonlinearity, 8 (1995), 235-253. doi: 10.1088/0951-7715/8/2/007. |
[2] | G. Dunne, Self-Dual Chern-Simons Theories, Volume 36, Springer Science & Business Media, Berlin, 2009. doi: 10.1007/978-3-540-44777-1. |
[3] | H. Huh, Energy solution to the Chern-Simons-Schrödinger equation, Abstract and Applied Analysis, 2013, Hidawi, Art. ID 590653, 7 pp. doi: 10.1155/2013/590653. |
[4] | R. Jackiw and S.-Y. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Physical Review D, 42 (1990), 3500-3513. doi: 10.1103/PhysRevD.42.3500. |
[5] | R. Jackiw and S.-Y. Pi, Soliton solutions to the gauged nonlinear Schrödinger equation on the plane, Physical Review Letters, 64 (1990), 2969-2972. doi: 10.1103/PhysRevLett.64.2969. |
[6] | R. Jackiw and S.-Y. Pi, Time-dependent Chern-Simons solitons and their quantization, Physical Review D, 44 (1991), 2524-2532. doi: 10.1103/PhysRevD.44.2524. |
[7] | K. Kim and S. Kwon, On Pseudoconformal Blow-Up Solutions to the Self-Dual Chern-Simons-Schrödinger Equation: Existence, Uniqueness, and Instability, Mem. Amer. Math. Soc., 284 (2023), vi+128 pp, arXiv: 1909.01055. doi: 10.1090/memo/1409. |
[8] | K. Kim and S. Kwon, Construction of blow-up manifolds to the equivariant self-dual Chern-Simons-Schrödinger equation, Ann. PDE, 9 (2023), Paper No. 6,129 pp, arXiv: 2009.02943. doi: 10.1007/s40818-023-00147-8. |
[9] | K. Kim, S. Kwon and S.-J. Oh, Blow-up dynamics for smooth finite energy radial data solutions to the self-dual Chern-Simons-Schrödinger equation, preprint, 2020, arXiv: 2010.03252. |
[10] | K. Kim, S. Kwon and S.-J. Oh, Soliton resolution for equivariant self-dual Chern-Simons-Schrödinger equation in weighted Sobolev class, preprint, 2022, arXiv: 2202.07314. |
[11] | Z. M. Lim, Large data well-posedness in the energy space of the Chern–Simons–Schrödinger system, Journal of Differential Equations, 264 (2018), 2553-2597. doi: 10.1016/j.jde.2017.10.026. |
[12] | Z. Li and B. Liu, On threshold solutions of the equivariant Chern–Simons–Schrödinger equation, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 39 (2022), 371–417. arXiv: 2010.09045. doi: 10.4171/aihpc/10. |
[13] | B. Liu and P. Smith, Global wellposedness of the equivariant Chern–Simons–Schrödinger equation, Revista Matemática Iberoamericana, 32 (2016), 751-794. doi: 10.4171/RMI/898. |
[14] | B. Liu, P. Smith and D. Tataru, Local wellposedness of Chern–Simons–Schrödinger, International Mathematics Research Notices, 2014 (2014), 6341-6398. doi: 10.1093/imrn/rnt161. |
[15] | Y. Martel and F. Merle, A Liouville theorem for the critical generalized Korteweg–de Vries equation, Journal de Mathématiques Pures et Appliquées, 79 (2000), 339-425. doi: 10.1016/S0021-7824(00)00159-8. |
[16] | F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Mathematical Journal, 69 (1993), 427-454. doi: 10.1215/S0012-7094-93-06919-0. |
[17] | S.-J. Oh and F. Pusateri, Decay and scattering for the Chern–Simons–Schrödinger equations, International Mathematics Research Notices, 2015 (2015), 13122-13147. doi: 10.1093/imrn/rnv093. |