In the present note we establish an almost-optimal solvability result for Kirchhoff-type problems of the following form
$ \begin{cases} -M\big(\|\nabla u\|^2_{L^2(\Omega)}\big)\Delta u = f(x, u) & \text{in } \Omega , \\ u \geq 0, \, u\not\equiv 0 & \text{in } \Omega , \\ u = 0 & \text{on } \partial \Omega . \end{cases} $
where $ f $ has sublinear growth and $ M $ is a non-decreasing map with $ M(0)\geq 0 $. Our approach is purely variational, and the result we obtain is resemblant to the one established by Brezis and Oswald (Nonlinear Anal., 1986) for sublinear elliptic equations.
Citation: |
[1] |
C. O. Alves and F. J. S. A. Correa, On existence of solutions for a class of problem involving a nonlinear operator, Comm. Appl. Nonlinear Anal., 8 (2001), 43-56.
![]() ![]() |
[2] |
C. O. Alves and F. J. S. A. Correa, A sub-supersolution approach for a quasilinear Kirchhoff equation, J. Math. Phys., 56 (2015), 051501.
doi: 10.1063/1.4919670.![]() ![]() ![]() |
[3] |
A. Ambrosetti and D. Arcoya, Positive solutions of elliptic Kirchhoff equations, Adv. Nonlinear Stud., 17 (2017), 3-15.
doi: 10.1515/ans-2016-6004.![]() ![]() ![]() |
[4] |
S. Biagi, D. Mugnai and E. Vecchi, A Brezis-Oswald approach for mixed local and nonlocal operators, Commun. Contemp. Math., (2022), 2250057, 28 pp.
doi: 10.1142/S0219199722500572.![]() ![]() |
[5] |
S. Biagi, D. Mugnai and E. Vecchi, Necessary condition in a Brezis-Oswald-type problem for mixed local and nonlocal operators, Appl. Math. Lett., 132 (2022), 108177.
doi: 10.1016/j.aml.2022.108177.![]() ![]() ![]() |
[6] |
H. Brezis and L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal., 10 (1986), 55-64.
doi: 10.1016/0362-546X(86)90011-8.![]() ![]() ![]() |
[7] |
F. J. S. A. Corrêa, S. D. B. Menezes and J. Ferreira, On a class of problems involving a nonlocal operator, Appl. Math. Comput., 147 (2004), 475-489.
doi: 10.1016/S0096-3003(02)00740-3.![]() ![]() ![]() |
[8] |
J. I. Díaz and J. E. Saá, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), 521-524.
![]() ![]() |
[9] |
G. M. Figueiredo and A. Suárez, Some remarks on the comparison principle in Kirchhoff equations, Rev. Mat. Iberoam., 34 (2018), 609-620.
doi: 10.4171/RMI/997.![]() ![]() ![]() |
[10] |
G. Fragnelli, D. Mugnai and N. S. Papageorgiou, The Brezis–Oswald result for quasilinear Robin problems, Adv. Nonlinear Stud., 16 (2016), 603-622.
doi: 10.1515/ans-2016-0010.![]() ![]() ![]() |
[11] |
J. García-Melián and L. Iturriaga, Some counterexamples related to the stationary Kirchhoff equation, Proc. Amer. Math. Soc., 144 (2016), 3405-3411.
doi: 10.1090/proc/12971.![]() ![]() ![]() |
[12] |
E. Giusti, Direct Methods in the Calculus of Variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003.
doi: 10.1142/9789812795557.![]() ![]() ![]() |
[13] |
A. Iannizzotto and D. Mugnai, Optimal solvability for the fractional p-Laplacian with Dirichlet conditions, preprint, 2022, arXiv: 2206.08685.
![]() |
[14] |
T. Leonori, I. Peral, A. Primo and F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35 (2015), 6031-6068.
doi: 10.3934/dcds.2015.35.6031.![]() ![]() ![]() |
[15] |
Z. Liang, F. Li and J. Shi, Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 155-167.
doi: 10.1016/j.anihpc.2013.01.006.![]() ![]() ![]() |
[16] |
G. Molica Bisci and V. D. Rǎdulescu, A sharp eigenvalue theorem for fractional elliptic equations, Isr. J. Math., 219 (2017), 331-351.
doi: 10.1007/s11856-017-1482-2.![]() ![]() ![]() |
[17] |
S. Mosconi, A non-smooth Brezis-Oswald uniqueness result, Open Mathematics, 21 (2023), Paper No. 20220594, 28 pp.
doi: 10.1515/math-2022-0594.![]() ![]() ![]() |
[18] |
D. Mugnai, A. Pinamonti and E. Vecchi, Towards a Brezis-Oswald-type result for fractional problems with Robin boundary conditions, Calc. Var. Partial Differential Equations, 59 (2020), Paper No. 43, 25 pp.
doi: 10.1007/s00526-020-1708-8.![]() ![]() ![]() |
[19] |
K. Perera and Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 221 (2006), 246-255.
doi: 10.1016/j.jde.2005.03.006.![]() ![]() ![]() |
[20] |
P. Pucci, M. Xiang and B. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional $p$-Laplacian in $\mathbb{R}^N$, Calc. Var. Partial Differential Equations, 54 (2015), 2785-2806.
doi: 10.1007/s00526-015-0883-5.![]() ![]() ![]() |
[21] |
M. Xiang, V. D. Rǎdulescu and B. Zhang, Fractional Kirchhoff problems with critical Trudinger-Moser nonlinearity, Calc. Var. Partial Differential Equations, 58 (2019), Paper No. 57, 27 pp.
doi: 10.1007/s00526-019-1499-y.![]() ![]() ![]() |