\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global existence and blow-up of solutions to the double nonlinear porous medium equation

  • *Corresponding author: Berikbol T. Torebek

    *Corresponding author: Berikbol T. Torebek

This research has been funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant No. AP19676817). The second author was supported by FWO Odysseus 1 grant G.0H94.18N: Analysis and Partial Differential Equations. No new data was collected or generated during the course of this research.

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this study, we examine a double nonlinear porous medium equation subject to a novel nonlinearity condition within a bounded domain. First, we introduce the blow-up solution for the problem under consideration for the negative initial energy. By introducing a set of potential wells, we construct invariant sets of solutions for the double nonlinear porous medium equation. For subcritical and critical initial energy scenarios, we derive the global existence and asymptotic behavior of weak solutions, as well as blow-up phenomena occurring within a finite time for the positive solution to the double nonlinear porous medium equation.

    Mathematics Subject Classification: Primary: 35K92, 35B44; Secondary: 35A01.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] C. Bandle and H. Brunner, Blow-up in diffusion equations: A survey, J. Comput. Apl. Math., 97 (1998), 3-22.  doi: 10.1016/S0377-0427(98)00100-9.
    [2] M. BonforteA. Figalli and J. L. Vázquez, Sharp global estimates for local and nonlocal porous medium-type equations in bounded domains, Anal. PDE, 11 (2018), 945-982.  doi: 10.2140/apde.2018.11.945.
    [3] X. ChenM. Fila and J.-S. Guo, Boundedness of global solutions of a supercritical parabolic equation, Nonlinear Anal., 68 (2008), 621-628.  doi: 10.1016/j.na.2006.11.023.
    [4] S.-Y. Chung and M.-J. Choi, A new condition for the concavity method of blow-up solutions to $p$-Laplacian parabolic equations, J. Differential Equations, 265 (2018), 6384-6399.  doi: 10.1016/j.jde.2018.07.032.
    [5] J. Fernandes and L. Maia, Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium, Discrete Contin. Dyn. Syst., 41 (2021), 1297-1318.  doi: 10.3934/dcds.2020318.
    [6] V. A. Galaktionov and J. L. Vázquez, Continuation of blowup solutions of nonlinear heat equations in several dimensions, Comm. Pure Appl. Math., 50 (1997), 1-67.  doi: 10.1002/(SICI)1097-0312(199701)50:1<1::AID-CPA1>3.0.CO;2-H.
    [7] Y. Giga and N. Mizoguchi, On time periodic solutions of the Dirichlet problem for degenerate parabolic equations of nondivergence type, J. Math. Anal. Appl., 201 (1996), 396-416.  doi: 10.1006/jmaa.1996.0263.
    [8] G. GrilloM. Muratori and M. M. Porzio, Porous media equations with two weights: Smoothing and decay properties of energy solutions via Poincaré inequalities, Discrete Contin. Dyn. Syst., 33 (2013), 3599-3640.  doi: 10.3934/dcds.2013.33.3599.
    [9] G. GrilloM. Muratori and F. Punzo, Fractional porous media equations: Existence and uniqueness of weak solutions with measure data, Calc. Var. Partial Differential Equations, 54 (2015), 3303-3335.  doi: 10.1007/s00526-015-0904-4.
    [10] R. G. Iagar and A. Sánchez, Large time behavior for a porous medium equation in a nonhomogeneous medium with critical density, Nonlinear Anal., 102 (2014), 226-241.  doi: 10.1016/j.na.2014.02.016.
    [11] M. IshiwataB. RufF. Sani and E. Terraneo, Asymptotics for a parabolic equation with critical exponential nonlinearity, J. Evol. Equ., 21 (2021), 1677-1716.  doi: 10.1007/s00028-020-00649-z.
    [12] B. Kawohl and P. Lindqvist, Positive eigenfunctions for the $p$-Laplace operator revisited, Analysis, 26 (2006), 545-550.  doi: 10.1524/anly.2006.26.4.545.
    [13] H. A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t = -Au +J(u)$, Arch. Ration. Mech. Anal., 51 (1973), 371-386.  doi: 10.1007/BF00263041.
    [14] H. A. Levine and L. E. Payne, Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time, J. Differential Equations, 16 (1974), 319-334.  doi: 10.1016/0022-0396(74)90018-7.
    [15] W. LianJ. Wang and R. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, J. Differential Equations, 269 (2020), 4914-4959.  doi: 10.1016/j.jde.2020.03.047.
    [16] J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires, Etudes Mathematiques, Dunod-Gauthier-Villars, 1969 (French).
    [17] Y. Liu, T. Yu and W. Li, Global well-posedness, asymptotic behavior and blow-up of solutions for a class of degenerate parabolic equations, Nonlinear Anal., 196 (2020), 111759, 14 pp. doi: 10.1016/j.na.2020.111759.
    [18] Y. Liu and J. Zhao, Nonlinear parabolic equations with critical initial conditions $J(u_0) = d$ or $I(u_0) = 0$, Nonlinear Anal., 58 (2004), 873-883.  doi: 10.1016/j.na.2004.05.019.
    [19] Y. Liu and J. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006), 2665-2687.  doi: 10.1016/j.na.2005.09.011.
    [20] L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.  doi: 10.1007/BF02761595.
    [21] G. A. Philippin and V. Proytcheva, Some remarks on the asymptotic behaviour of the solutions of a class of parabolic problems, Math. Methods Appl. Sci., 29 (2006), 297-307.  doi: 10.1002/mma.679.
    [22] P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States, 2nd edn. Birkhäuser/Springer, Cham, 2019. doi: 10.1007/978-3-030-18222-9.
    [23] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov, Blow-Up in Quasilinear Parabolic Equations, in: De Gruyter Expositions in Mathematics, vol. 19, Walter de Gruyter Co., Berlin, 1995. doi: 10.1515/9783110889864.535.
    [24] D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 30 (1968), 148-172.  doi: 10.1007/BF00250942.
    [25] P. W. Schaefer, Blow-up phenomena in some porous medium problems, Dyn. Sys. and Appl., 18 (2009), 103-109. 
    [26] P. Souplet, Morrey spaces and classification of global solutions for a supercritical semilinear heat equation in $\mathbb{R}^n$, J. Funct. Anal., 272 (2017), 2005-2037.  doi: 10.1016/j.jfa.2016.09.002.
    [27] Q.-M. Tran and T.-T. Vu, Some sharp results about the global existence and blowup of solutions to a class of coupled pseudo-parabolic equations, J. Math. Anal. Appl., 506 (2022), Paper No. 125719, 39 pp. doi: 10.1016/j.jmaa.2021.125719.
    [28] M. Tsutsumi, On solutions of semilinear differential equations in a Hilbert space, Math. Japon., 17 (1972), 173-193. 
    [29] M. Tsutsumi, Existence and nonexistence of global solutions for nonlinear parabolic equations, Publ. Res. Inst. Math. Sci., 8 (1972), 211-229.  doi: 10.2977/prims/1195193108.
    [30] J. L. VázquezThe Porous Medium Equation: Mathematical Theory, Oxford University Press, 2007. 
    [31] X. Wang and R. Xu, Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation, Adv. Nonlinear Anal., 10 (2021), 261-288.  doi: 10.1515/anona-2020-0141.
    [32] R. Xu, Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data, Quart. Appl. Math., 68 (2010), 459-468.  doi: 10.1090/S0033-569X-2010-01197-0.
    [33] R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763.  doi: 10.1016/j.jfa.2013.03.010.
    [34] J. ZhouG. Xu and C. Mu, Analysis of a pseudo-parabolic equation by potential wells, Ann. Mat. Pura Appl., 200 (2021), 2741-2766.  doi: 10.1007/s10231-021-01099-1.
  • 加载中
SHARE

Article Metrics

HTML views(2164) PDF downloads(288) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return