\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The connection between the dynamical properties of 3D systems and the image of the energy-Casimir mapping

  • *Corresponding author: Kaiyin Huang

    *Corresponding author: Kaiyin Huang

The second author is supported by NSF of China (No. 12271203), Science and Technology Development Project of Jilin Province (No. YDZJ202101ZYTS141), and Program for Changbaishan Scholars of Jilin Province. The third author is partially supported by Sichuan University Postdoctoral Interdisciplinary Innovation Fund (No.0020104153010), Fundamental Research Funds for the Central Universities (No.20826041E4168), and NSF of China (No.12001386, No.12090013).

Abstract / Introduction Full Text(HTML) Figure(7) Related Papers Cited by
  • We investigate the connection between the dynamical properties of a class of 3D systems and the geometric characteristics of the image of the energy-Casimir mapping. By examining the energy-Casimir mapping for such systems, we can explore the stability of the equilibrium states, the distribution of the periodic solutions, and the existence of homoclinic or heteroclinic orbits. We apply our findings to investigate the dynamic behavior of two specific equations, and provide a topological classification of the fibers of the energy-Casimir mapping for the two systems.

    Mathematics Subject Classification: Primary: 70H05, 70K42; Secondary: 70K44.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  $ Q_0\in \Omega^o\cap \partial U $ with $ U = \mathcal{EC}(B_{r_0}(P_0)) $: $ P_0 $ is an equilibrium state

    Figure 2.  $ Q_0\in\partial\Omega $ and $ \mathcal{EC}^{-1}(Q_0) = \{P_0\}\cup D $ are composed of equilibrium states

    Figure 3.  $ Q_0\in \partial \Omega, L\cap\Sigma = \emptyset, Q\in L: $ $ \Gamma_{h}\subset \mathcal{EC}^{-1}(Q) $ is a periodic orbit

    Figure 4.  The image of the energy-Casimir mapping of the system (6)

    Figure 5.  The correspondence between the dynamic behavior of (6) and $ \Omega $ for $ \beta = \frac{1}{4}, c_0 = -0.8 $: $ \mathcal{EC}^{-1}(Q_0) = \{P_0\} $, $ \mathcal{EC}^{-1}(Q_1) = \Gamma_{h_1} $, $ \mathcal{EC}^{-1}(Q_2) = \{P_2\} $

    Figure 6.  The correspondence between the dynamic behavior of (6) and $ \Omega $ for $ \beta = \frac{1}{4}, c_0 = -4 $: $ \mathcal{EC}^{-1}(Q_0) = \{P_0\} $, $ \mathcal{EC}^{-1}(Q_1) = \Gamma_{h_1} $, $ \mathcal{EC}^{-1}(Q_2) = \Gamma_{h_2} $, $ \mathcal{EC}^{-1}(Q_3) = \{P_3\}\cup\Gamma^+_{h_3}\cup\Gamma^-_{h_3} $, $ \mathcal{EC}^{-1}(Q_4) = \Gamma^+_{h_4}\cup\Gamma^-_{h_4} $, $ \mathcal{EC}^{-1}(Q_5) = \{P^+_5, P^-_5\} $

    Figure 7.  The correspondence between the dynamic behavior of (8) and $ \Omega (h_0 = 3) $: $ \mathcal{EC}^{-1}(Q_0) = \{P_0^+, P_0^-\} $, $ \mathcal{EC}^{-1}(Q_1) = \Gamma_{c_1}^+\cup\Gamma_{c_1}^- $, $ \mathcal{EC}^{-1}(Q_2) = \Gamma_1\cup\Gamma_2\cup\Gamma_3\cup\Gamma_4\cup\{P_2^+, P_2^-\} $, $ \mathcal{EC}^{-1}(Q_3) = \Gamma_{c_3}^+\cup \Gamma_{c_3}^- $

  • [1] T. Bînzar and C. Lăzureanu, A Rikitake type system with one control, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1755-1776.  doi: 10.3934/dcdsb.2013.18.1755.
    [2] T. Binzar and C. Lăzureanu, On some dynamical and geometrical properties of the Maxwell–Bloch equations with a quadratic control, J. Geom. Phys., 70 (2013), 1-8.  doi: 10.1016/j.geomphys.2013.03.016.
    [3] S.-Y. Huang and S.-H. Wang, On S-shaped bifurcation curves for a two-point boundary value problem arising in a theory of thermal explosion, Discrete Contin. Dyn. Syst., 35 (2015), 4839-4858.  doi: 10.3934/dcds.2015.35.4839.
    [4] J. JiaoK. Huang and W. Liu, Stationary shear flows of nematic liquid crystals: A comprehensive study via Ericksen-Leslie model, J. Dynam. Differential Equations, 34 (2022), 239-269.  doi: 10.1007/s10884-021-09958-4.
    [5] C. Lăzureanu, On a Hamilton-Poisson approach of the Maxwell-Bloch equations with a control, Math. Phys. Anal. Geom., 20 (2017), Paper No. 20, 22 pp. doi: 10.1007/s11040-017-9251-3.
    [6] J. LlibreR. Oliveira and C. Valls, On the Darboux integrability of a three-dimensional forced–damped differential system, J. Nonlinear Math. Phys., 24 (2017), 473-494.  doi: 10.1080/14029251.2017.1375686.
    [7] A. MahdiV. G. Romanovski and D. S. Shafer, Stability and periodic oscillations in the Moon-Rand systems, Nonlinear Anal. Real World Appl., 14 (2013), 294-313.  doi: 10.1016/j.nonrwa.2012.06.005.
    [8] J. E. Marsden and T. S. Ratiu, Introduction to mechanics and symmetry: A basic exposition of classical mechanical systems, 2$^{nd}$ edition, Springer, New York, 1999. doi: 10.1007/978-0-387-21792-5.
    [9] T. MiyajiH. Okamoto and A. D. D. Craik, Three-dimensional forced-damped dynamical systems with rich dynamics: Bifurcations, chaos and unbounded solutions, Physica D, 311-312 (2015), 25-36.  doi: 10.1016/j.physd.2015.09.001.
    [10] F. Moon and R. Rand, Parametric stiffness control of flexible structures, Jet Propulsion Laboratory Publication, 85-29, vol. II, California Institute of Technology, 1985,329-342.
    [11] I. Pehlivan, Four-scroll stellate new chaotic system, Optoelectronics and Advanced Materials, Rapid Communications, 5 (2011), 1003-1006. 
    [12] R. M. TudoranA. Aron and Ş. Nicoară, On a Hamiltonian version of the Rikitake system, SIAM J. Appl. Dyn. Syst., 8 (2009), 454-479.  doi: 10.1137/080728822.
    [13] R. M. Tudoran and R. A. Tudoran, On a large class of three-dimensional Hamiltonian systems, J. Math. Phys., 50 (2009), 012703.  doi: 10.1063/1.3068405.
    [14] R. M. Tudoran and A. Gîrban, On the Hamiltonian dynamics and geometry of the Rabinovich system, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 789-823.  doi: 10.3934/dcdsb.2011.15.789.
    [15] R. M. Tudoran and A. Gîrban, On a Hamiltonian version of a three-dimensional Lotka-Volterra system, Nonlinear Anal. Real World Appl., 13 (2012), 2304-2312.  doi: 10.1016/j.nonrwa.2012.01.025.
    [16] R. M. Tudoran and A. Gîrban, On the completely integrable case of the Rössler system, J. Math. Phys., 53 (2012), 052701.  doi: 10.1063/1.4708621.
    [17] A. Weinstein, The local structure of Poisson manifolds, J. Differential Geom., 18 (1983), 523-557.  doi: 10.4310/jdg/1214437787.
  • 加载中

Figures(7)

SHARE

Article Metrics

HTML views(2590) PDF downloads(196) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return