\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Quantitative statistical stability for equilibrium states of piecewise partially hyperbolic maps

  • *Corresponding author: Rafael Lucena

    *Corresponding author: Rafael Lucena

The 3rd author is supported by [Alagoas Research Foundation-FAPEAL (Brazil) Grants 60030.0000000161/2022 and CNPq (Brazil) Grants 409198/2021-8].

Abstract / Introduction Full Text(HTML) Figure(1) Related Papers Cited by
  • We consider a class of endomorphisms that contains a set of piecewise partially hyperbolic dynamics semi-conjugated to non-uniformly expanding maps. Our goal is to study a class of endomorphisms that preserve a foliation that is almost everywhere uniformly contracted, with possible discontinuity sets parallel to the contracting direction. We apply the spectral gap property and the $ \zeta $-Hölder regularity of the disintegration of its equilibrium states to prove a quantitative statistical stability statement. More precisely, under deterministic perturbations of the system of size $ \delta $, we show that the $ F $-invariant measure varies continuously with respect to a suitable anisotropic norm. Furthermore, we establish that certain interesting classes of perturbations exhibit a modulus of continuity estimated by $ D_2\delta^\zeta \log \delta $, where $ D_2 $ is a constant.

    Mathematics Subject Classification: Primary: 37A25, 37A10; Secondary: 37C30, 37D50.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The graph of the perturbed map g

  • [1] V. Araujo and M. J. Pacifico, Three-Dimensional Flows, Springer-Verlag, New York, 2010. doi: 10.1007/978-3-642-11414-4.
    [2] R. A. BilbaoR. Bioni and R. Lucena, Hölder regularity and exponential decay of correlations for a class of piecewise partially hyperbolic maps, Nonlinearity, 33 (2020), 6790-6818.  doi: 10.1088/1361-6544/aba888.
    [3] A. Castro and T. Nascimento, Statistical Properties of the maximal entropy measure for partially hyperbolic attractors, Ergodic Theory and Dynamical Systems, 37 (2017), 1060-1101.  doi: 10.1017/etds.2015.86.
    [4] A. Castro and P. Varandas, Equilibrium states for non-uniformly expanding maps: Decay of correlations and strong stability, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 30 (2013), 225-249.  doi: 10.1016/j.anihpc.2012.07.004.
    [5] S. Galatolo, Quantitative statistical stability, speed of convergence to equilibrium for partially hyperbolic skew products, J. Éc. polytech. Math., 5 (2018), 377-405.  doi: 10.5802/jep.73.
    [6] S. Galatolo and R. Lucena, Spectral Gap and quantitative statistical stability for systems with contracting fibers and Lorenz like maps, Discrete & Continuous Dynamical Systems - A, 40 (2020), 1309-1360.  doi: 10.3934/dcds.2020079.
    [7] S. Galatolo and M. J. Pacifico, Lorenz-like flows: Exponential decay of correlations for the Poincaré map, logarithm law, quantitative recurrence, Ergodic Theory and Dynamical Systems, 30 (2010), 1703-1737.  doi: 10.1017/S0143385709000856.
    [8] F. Ledrappier and P. Walters, A relativised variational principle for continuous transformations, J. London Math. Soc., 16 (1977), 568-576.  doi: 10.1112/jlms/s2-16.3.568.
    [9] D. Lima and R. Lucena, Lipschitz regularity of the invariant measure and statistical properties for a class of random dynamical systems, preprint, 2020, arXiv: 2001.08265.
    [10] R. Lucena, Spectral Gap for Contracting Fiber Systems and Applications, Ph.D thesis, Federal University of Rio de Janeiro in Brazil, 2015.
    [11] K. Oliveira and M. Viana, Fundamentos da Teoria Ergódica, Colecão Fronteiras da Matematica - SBM, Rio de Janeiro, 2014.
    [12] P. Varandas and M. Viana, Existence, uniqueness and stability of equilibrium states for non-uniformly expanding maps, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 27 (2010), 555-593.  doi: 10.1016/j.anihpc.2009.10.002.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(1596) PDF downloads(192) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return