We consider a class of endomorphisms that contains a set of piecewise partially hyperbolic dynamics semi-conjugated to non-uniformly expanding maps. Our goal is to study a class of endomorphisms that preserve a foliation that is almost everywhere uniformly contracted, with possible discontinuity sets parallel to the contracting direction. We apply the spectral gap property and the $ \zeta $-Hölder regularity of the disintegration of its equilibrium states to prove a quantitative statistical stability statement. More precisely, under deterministic perturbations of the system of size $ \delta $, we show that the $ F $-invariant measure varies continuously with respect to a suitable anisotropic norm. Furthermore, we establish that certain interesting classes of perturbations exhibit a modulus of continuity estimated by $ D_2\delta^\zeta \log \delta $, where $ D_2 $ is a constant.
Citation: |
[1] |
V. Araujo and M. J. Pacifico, Three-Dimensional Flows, Springer-Verlag, New York, 2010.
doi: 10.1007/978-3-642-11414-4.![]() ![]() ![]() |
[2] |
R. A. Bilbao, R. Bioni and R. Lucena, Hölder regularity and exponential decay of correlations for a class of piecewise partially hyperbolic maps, Nonlinearity, 33 (2020), 6790-6818.
doi: 10.1088/1361-6544/aba888.![]() ![]() ![]() |
[3] |
A. Castro and T. Nascimento, Statistical Properties of the maximal entropy measure for partially hyperbolic attractors, Ergodic Theory and Dynamical Systems, 37 (2017), 1060-1101.
doi: 10.1017/etds.2015.86.![]() ![]() ![]() |
[4] |
A. Castro and P. Varandas, Equilibrium states for non-uniformly expanding maps: Decay of correlations and strong stability, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 30 (2013), 225-249.
doi: 10.1016/j.anihpc.2012.07.004.![]() ![]() ![]() |
[5] |
S. Galatolo, Quantitative statistical stability, speed of convergence to equilibrium for partially hyperbolic skew products, J. Éc. polytech. Math., 5 (2018), 377-405.
doi: 10.5802/jep.73.![]() ![]() ![]() |
[6] |
S. Galatolo and R. Lucena, Spectral Gap and quantitative statistical stability for systems with contracting fibers and Lorenz like maps, Discrete & Continuous Dynamical Systems - A, 40 (2020), 1309-1360.
doi: 10.3934/dcds.2020079.![]() ![]() ![]() |
[7] |
S. Galatolo and M. J. Pacifico, Lorenz-like flows: Exponential decay of correlations for the Poincaré map, logarithm law, quantitative recurrence, Ergodic Theory and Dynamical Systems, 30 (2010), 1703-1737.
doi: 10.1017/S0143385709000856.![]() ![]() ![]() |
[8] |
F. Ledrappier and P. Walters, A relativised variational principle for continuous transformations, J. London Math. Soc., 16 (1977), 568-576.
doi: 10.1112/jlms/s2-16.3.568.![]() ![]() ![]() |
[9] |
D. Lima and R. Lucena, Lipschitz regularity of the invariant measure and statistical properties for a class of random dynamical systems, preprint, 2020, arXiv: 2001.08265.
![]() |
[10] |
R. Lucena, Spectral Gap for Contracting Fiber Systems and Applications, Ph.D thesis, Federal University of Rio de Janeiro in Brazil, 2015.
![]() |
[11] |
K. Oliveira and M. Viana, Fundamentos da Teoria Ergódica, Colecão Fronteiras da Matematica - SBM, Rio de Janeiro, 2014.
![]() |
[12] |
P. Varandas and M. Viana, Existence, uniqueness and stability of equilibrium states for non-uniformly expanding maps, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 27 (2010), 555-593.
doi: 10.1016/j.anihpc.2009.10.002.![]() ![]() ![]() |
The graph of the perturbed map g