The shortest distance between the first $ n $ iterates of a typical point can be quantified with a log rule for some dynamical systems admitting Gibbs measures. We show this in two settings. For topologically mixing Markov shifts with at most countably infinite alphabet admitting a Gibbs measure with respect to a locally Hölder potential, we prove the asymptotic length of the longest common substring for a typical point converges and the limit depends on the Rényi entropy. For interval maps with a Gibbs-Markov structure, we prove a similar rule relating the correlation dimension of Gibbs measures with the shortest distance between two iterates in the orbit generated by a typical point.
Citation: |
[1] |
J. Aaronson and M. Denker, Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps, Stoch. Dyn., 1 (2001), 193-237.
doi: 10.1142/S0219493701000114.![]() ![]() ![]() |
[2] |
R. Arratia and M. S. Waterman, An Erdös-Rényi law with shifts, Adv. Math., 55 (1985), 13-23.
doi: 10.1016/0001-8708(85)90003-9.![]() ![]() ![]() |
[3] |
V. Barros, L. Liao and J. Rousseau, On the shortest distance between orbits and the longest common substring problem, Adv. Math., 344 (2019), 311-339.
doi: 10.1016/j.aim.2019.01.001.![]() ![]() ![]() |
[4] |
V. Barros and J. Rousseau, Shortest distance between multiple orbits and generalized fractal dimensions, Ann. Henri Poincaré, 22 (2021), 1853-1885.
doi: 10.1007/s00023-021-01039-y.![]() ![]() ![]() |
[5] |
R. Bowen, Equilibrium States and The Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, vol. 470. Springer, Berlin, 2008.
![]() ![]() |
[6] |
P. Collet, C. Giardina and F. Redig, Matching with shift for one-Dimensional Gibbs measures, Ann. Appl. Probab., 19 (2009), 1581-1602.
doi: 10.1214/08-AAP588.![]() ![]() ![]() |
[7] |
A. Dembo, S. Karlin and O. Zeitouni, Critical phenomena for sequence matching with scoring, Ann. Probab., 22 (1994), 1993-2021.
![]() ![]() |
[8] |
A. Dembo, S. Karlin and O. Zeitouni, Limit distribution of maximal non-aligned two-sequence segmental score, Ann. Probab., 22 (1994), 2022-2039.
![]() ![]() |
[9] |
C. Gabriela, V. Girardin and L. Loïck, Computation and estimation of generalized entropy rates for denumerable Markov chains, IEEE Trans. Inform. Theory, 57 (2011), 4026-4034.
doi: 10.1109/TIT.2011.2133710.![]() ![]() ![]() |
[10] |
A. Galves and B. Schmitt, Inequalities for hitting times in mixing dynamical systems, Random Comput. Dynam., 5 (1997), 337-347.
![]() ![]() |
[11] |
S. Gouëzel, J. Rousseau and M. Stadlbauer, Minimal distance between random orbits, preprint, 2022, arXiv: 2209.13240.
![]() |
[12] |
N. Haydn and S. Vaienti, The Rényi entropy function and the large deviation of short return times, Ergodic Theory and Dynam. Systems, 30 (2010), 159-179.
doi: 10.1017/S0143385709000030.![]() ![]() ![]() |
[13] |
M. Holland, M. Nicol and A. Török, Extreme value theory for non-uniformly expanding dynamical systems, Trans. Amer. Math. Soc., 364 (2012), 661-688.
doi: 10.1090/S0002-9947-2011-05271-2.![]() ![]() ![]() |
[14] |
G. Keller, On the rate of convergence to equilibrium in one-dimensional systems, Comm. Math. Phys., 96 (1984), 181-193.
doi: 10.1007/BF01240219.![]() ![]() ![]() |
[15] |
C. Liverani, B. Sassoul and S. Vaienti, A probabilistic approach to intermittency, Ergodic Theory and Dynam. Systems, 19 (1999), 671-685.
doi: 10.1017/S0143385799133856.![]() ![]() ![]() |
[16] |
R. E. A. C. Paley and A. Zygmund, On some series of functions, (3), Math. Proc. Cambridge Philos. Soc., 28 (1932), 190-205.
doi: 10.1017/S0305004100010860.![]() ![]() |
[17] |
O. M. Sarig, Thermodynamic formalism for countable Markov shifts, Ergodic Theory Dynam. Systems, 19 (1999), 1565-1593.
doi: 10.1017/S0143385799146820.![]() ![]() ![]() |
[18] |
O. Sarig, Existence of Gibbs measures for countable Markov shifts, Proc. Amer. Math. Soc., 131 (2003), 1751-1758.
doi: 10.1090/S0002-9939-03-06927-2.![]() ![]() ![]() |