The shortest distance between the first $ n $ iterates of a typical point can be quantified with a log rule for some dynamical systems admitting Gibbs measures. We show this in two settings. For topologically mixing Markov shifts with at most countably infinite alphabet admitting a Gibbs measure with respect to a locally Hölder potential, we prove the asymptotic length of the longest common substring for a typical point converges and the limit depends on the Rényi entropy. For interval maps with a Gibbs-Markov structure, we prove a similar rule relating the correlation dimension of Gibbs measures with the shortest distance between two iterates in the orbit generated by a typical point.
Citation: |
[1] | J. Aaronson and M. Denker, Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps, Stoch. Dyn., 1 (2001), 193-237. doi: 10.1142/S0219493701000114. |
[2] | R. Arratia and M. S. Waterman, An Erdös-Rényi law with shifts, Adv. Math., 55 (1985), 13-23. doi: 10.1016/0001-8708(85)90003-9. |
[3] | V. Barros, L. Liao and J. Rousseau, On the shortest distance between orbits and the longest common substring problem, Adv. Math., 344 (2019), 311-339. doi: 10.1016/j.aim.2019.01.001. |
[4] | V. Barros and J. Rousseau, Shortest distance between multiple orbits and generalized fractal dimensions, Ann. Henri Poincaré, 22 (2021), 1853-1885. doi: 10.1007/s00023-021-01039-y. |
[5] | R. Bowen, Equilibrium States and The Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, vol. 470. Springer, Berlin, 2008. |
[6] | P. Collet, C. Giardina and F. Redig, Matching with shift for one-Dimensional Gibbs measures, Ann. Appl. Probab., 19 (2009), 1581-1602. doi: 10.1214/08-AAP588. |
[7] | A. Dembo, S. Karlin and O. Zeitouni, Critical phenomena for sequence matching with scoring, Ann. Probab., 22 (1994), 1993-2021. |
[8] | A. Dembo, S. Karlin and O. Zeitouni, Limit distribution of maximal non-aligned two-sequence segmental score, Ann. Probab., 22 (1994), 2022-2039. |
[9] | C. Gabriela, V. Girardin and L. Loïck, Computation and estimation of generalized entropy rates for denumerable Markov chains, IEEE Trans. Inform. Theory, 57 (2011), 4026-4034. doi: 10.1109/TIT.2011.2133710. |
[10] | A. Galves and B. Schmitt, Inequalities for hitting times in mixing dynamical systems, Random Comput. Dynam., 5 (1997), 337-347. |
[11] | S. Gouëzel, J. Rousseau and M. Stadlbauer, Minimal distance between random orbits, preprint, 2022, arXiv: 2209.13240. |
[12] | N. Haydn and S. Vaienti, The Rényi entropy function and the large deviation of short return times, Ergodic Theory and Dynam. Systems, 30 (2010), 159-179. doi: 10.1017/S0143385709000030. |
[13] | M. Holland, M. Nicol and A. Török, Extreme value theory for non-uniformly expanding dynamical systems, Trans. Amer. Math. Soc., 364 (2012), 661-688. doi: 10.1090/S0002-9947-2011-05271-2. |
[14] | G. Keller, On the rate of convergence to equilibrium in one-dimensional systems, Comm. Math. Phys., 96 (1984), 181-193. doi: 10.1007/BF01240219. |
[15] | C. Liverani, B. Sassoul and S. Vaienti, A probabilistic approach to intermittency, Ergodic Theory and Dynam. Systems, 19 (1999), 671-685. doi: 10.1017/S0143385799133856. |
[16] | R. E. A. C. Paley and A. Zygmund, On some series of functions, (3), Math. Proc. Cambridge Philos. Soc., 28 (1932), 190-205. doi: 10.1017/S0305004100010860. |
[17] | O. M. Sarig, Thermodynamic formalism for countable Markov shifts, Ergodic Theory Dynam. Systems, 19 (1999), 1565-1593. doi: 10.1017/S0143385799146820. |
[18] | O. Sarig, Existence of Gibbs measures for countable Markov shifts, Proc. Amer. Math. Soc., 131 (2003), 1751-1758. doi: 10.1090/S0002-9939-03-06927-2. |