\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On semidiscrete models dominated by the heat, wave and Laplace equations

  • *Corresponding author: Marina Murillo-Arcila

    *Corresponding author: Marina Murillo-Arcila

Dedicated to the memory of my beloved sister Olga Lizama (1959-2024)

C. Lizama is partially supported by ANID Project FONDECYT 1220036 and DICYT, Universidad de Santiago de Chile, USACH. M. Murillo-Arcila is supported by MCIN/AEI/10.13039/501100011033, Projects PID2019-105011GBI00 and PID2022-139449NB-I00, by Generalitat Valenciana, Project PROMETEU/2021/070. M. Murillo-Arcila is also supported by the grant "Operator Theory: an interdisciplinary approach", reference ProyExcel_00780, a project financed in the 2021 call for Grants for Excellence Projects, under a competitive bidding regime, aimed at entities qualified as Agents of the Andalusian Knowledge System, in the scope of the Andalusian Research, Development and Innovation Plan (PAIDI 2020). Counseling of University, Research and Innovation of the Junta de Andalucía

Abstract / Introduction Full Text(HTML) Figure(4) Related Papers Cited by
  • We introduce a method to solve linear semidiscrete equations that provides for the first time explicit solutions for some well-known models such as the semidiscrete advection-diffusion equation and the semidiscrete Lighthill-Whitham-Richards equation, among others. We find conditions in the parameters of the model under which it can be dominated by the heat, wave or Laplace equations. We illustrate the fundamental solutions for all the cases based on the newly developed solution formulas. We also study spatial and time regularity in Lebesgue spaces for these models.

    Mathematics Subject Classification: Primary: 39A06, 39A30; Secondary: 9A60, 47D06, 47D09.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The fundamental solution of (22) for $ \alpha = \beta = 1 $ and $ n = -2, ..., 2 $

    Figure 2.  The fundamental solution of (42) for $ \alpha=\beta=1 $ and $ c=5/4 $ with $ n=-2,...,2 $

    Figure 3.  The fundamental solution of (42) for $ \alpha=9/4 $, $ \beta=1/4 $ and $ c=1/4 $ with $ n=-2,...,2 $

    Figure 4.  The fundamental solution of (56) for $ \alpha = \beta = 1/4 $ and $ c = 0 $ with $ n = 0, ..., 5 $

  • [1] W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, 2$^{nd}$ edition, Monographs in Mathematics, 96. Birkhäuser/Springer Basel AG, Basel, 2011. doi: 10.1007/978-3-0348-0087-7.
    [2] J. Banasiak and M. Moszynski, Dynamics of birth-and-death processes wit proliferation-stability and chaos, Discrete Contin. Dyn. Syst., 29 (2011), 67-79.  doi: 10.3934/dcds.2011.29.67.
    [3] H. Bateman, Some simple differential difference equations and the related functions, Bull. Amer. Math. Soc., 49 (1943), 494-512.  doi: 10.1090/S0002-9904-1943-07927-X.
    [4] A. Böttcher and B. Silbermann, Introduction to Large Truncated Toeplitz Matrices, Universitext, Springer, New York, 1999. doi: 10.1007/978-1-4612-1426-7.
    [5] M. BurguerS. Göttlich and T. Jung, Derivation of a first order traffic flow model of Lighthill-Whitham-Richards type, 15th IFAC Symposium on Control in Transportation Systems, 51 (2018), 49-54. 
    [6] J. Campbell, The SMM model as a boundary value problem using the discrete diffusion equation, Theor. Population Biol., 72 (2007), 539-546. 
    [7] Ó. CiaurriT. A. GillespieL. RoncalJ. L. Torrea and J. L. Varona, Harmonic analysis associated with a discrete Laplacian, J. Anal. Math., 132 (2017), 109-131.  doi: 10.1007/s11854-017-0015-6.
    [8] J. A. ConejeroF. MartínezA. Peris and F. Ródenas, Chaotic asymptotic behaviour of the solutions of the Lighthill Whitham Richards equation, Nonlinear Dynamics., 84 (2016), 127-133.  doi: 10.1007/s11071-015-2245-4.
    [9] J. A. ConejeroA. Peris and M. Trujillo, Chaotic asymptotic behavior of the hyperbolic heat transfer equation solutions, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2943-2947.  doi: 10.1142/S0218127410027489.
    [10] E. D'Aniello and M. Maiuriello, On the spectrum of weighted shifts, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117 (2023), 1-19.  doi: 10.1007/s13398-022-01328-z.
    [11] G. Fath, Propagation failure of traveling waves in a discrete bistable medium, Phys. D, 116 (1998), 176-190.  doi: 10.1016/S0167-2789(97)00251-0.
    [12] W. Feller, An Introduction to Probability Theory and Its Applications Vol. 1, Third edition. John Wiley & Sons, Inc., New York-London-Sydney, 1968.
    [13] F. A. Grünbaum and P. Iliev, Heat kernel expansions on the integers, Math. Phys. Anal. Geom., 5 (2002), 183-200.  doi: 10.1023/A:1016258207606.
    [14] R. Hosek and J. Volek, Discrete advection–diffusion equations on graphs: Maximum principle and finite volumes, Appl. Math. Comp., 361 (2019), 630-644.  doi: 10.1016/j.amc.2019.06.014.
    [15] C. Hu and B. Li, Spatial dynamics for lattice differential equations with a shifting habitat, J. Differential Equations, 259 (2015), 1967-1989.  doi: 10.1016/j.jde.2015.03.025.
    [16] M. Kato and Y. Ueda, Asymptotic profile of solutions for the damped wave equation with a nonlinear convection term, Math. Meth. Appl. Sci., 40 (2017), 7760-7779.  doi: 10.1002/mma.4561.
    [17] C. Lizama and L. Roncal, Hölder-Lebesgue regularity and almost periodicity for semidiscrete equations with a fractional Laplacian, Discr. Cont. Dyn. Syst., 38 (2018), 1365-1403.  doi: 10.3934/dcds.2018056.
    [18] C. Martinez and M. Sanz, The Theory of Fractional Powers of Operators, North-Holland Mathematics Studies, 187. North-Holland Publishing Co., Amsterdam, 2001.
    [19] Y. Oono and M. Kohmoto, Discrete model of chemical turbulence, Phys. Rev. Lett., 55 (1985), 2927-2931.  doi: 10.1103/PhysRevLett.55.2927.
    [20] V. Protopopescu and Y. Y. Azmi, Topological chaos for a class of linear models, Math. Models Methods Appl. Sci., 2 (1992), 79-90.  doi: 10.1142/S0218202592000065.
    [21] A. P. Prudnikov, A. Y. Brychkov and O. I. Marichev, Integrals and series. Vol. 2., Gordon and Breach Science Publishers, New York, 1988.
    [22] A. P. Prudnikov, A. Y. Brychkov and O. I. Marichev, Integrals and Series. Vol. 3., Gordon and Breach Science Publishers, New York, 1990.
    [23] A. Slavík, Asymptotic behavior of solutions to the semidiscrete diffusion equation, Appl. Math. Letters, 106 (2020), 7 pp. doi: 10.1016/j.aml.2020.106392.
    [24] A. Slavík, Invariant regions for systems of lattice reaction-diffusion equations, J. Differential Equations, 263 (2017), 7601-7626.  doi: 10.1016/j.jde.2017.08.019.
    [25] A. Slavík and P. Stehlík, Dynamic diffusion-type equations on discrete-space domains, J. Math. Anal. Appl., 427 (2015), 525-545.  doi: 10.1016/j.jmaa.2015.02.056.
    [26] A. Slavík and P. Stehlík, Explicit solutions to dynamic diffusion-type equations and their time integrals, Appl. Math. Comput., 234 (2014), 486-505.  doi: 10.1016/j.amc.2014.01.176.
    [27] A. SlavíkP. Stehlík and J. Volek, Well-posedness and maximum principles for lattice reaction-diffusion equations, Adv. Nonlin. Anal., 8 (2019), 303-322.  doi: 10.1515/anona-2016-0116.
    [28] P. Stehlík, Exponential number of stationary solutions for Nagumo equations on graphs, J. Math. Anal. Appl., 455 (2017), 1749-1764.  doi: 10.1016/j.jmaa.2017.06.075.
    [29] P. Stehlík and J. Volek, Maximum principles for discrete and semidiscrete reaction-diffusion equation, Discrete Dyn. Nat. Soc., 2015 (2015), 1-13.  doi: 10.1155/2015/791304.
    [30] P. Stehlík and J. Volek, Transport equation on semidiscrete domains and Poisson-Bernoulli processes, J. Differ. Equ. Appl., 19 (2013), 439-456.  doi: 10.1080/10236198.2011.651133.
    [31] A. ŚwierniakA. Polánski and M. Kimmel, Control problems arising in chemotherapy under evolving drug resistance, Preprints of the 13th World Congress of IFAC, B (1996), 411-416. 
    [32] J. B. Walsh, Estimating the time to the most recent common ancestor for the Y chromosome or mitochondrial DNA for a pair of individuals, Genetics, 158 (2001), 897-912. 
    [33] G. A. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944.
  • 加载中

Figures(4)

SHARE

Article Metrics

HTML views(1026) PDF downloads(198) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return