\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Uniqueness and nondegeneracy of ground states for the Schrödinger-Newton equation with power nonlinearity

  • *Corresponding author: Huxiao Luo

    *Corresponding author: Huxiao Luo

The first author is supported by [NSFC(11901532)].

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this article, we studied the Schrödinger-Newton equation combined with local nonlinearity

    $ \begin{align} -\Delta u+\lambda u = \frac{1}{4\pi}\left(\frac{1}{|x|}\star u^{2}\right)u+|u|^{q-2}u \quad \text{in}\; \mathbb{R}^3, \end{align} ~~~~(1)$

    where $ \lambda\in \mathbb{R}_+ $, $ q\in (2, 3)\cup(3, 6) $. First, we proved that the positive ground state of (1) tends toward the positive solution of the Schrödinger equation

    $ \begin{align} -\Delta u+u = u^{q-1} \quad \text{in}\; \mathbb{R}^3, \end{align} ~~~~(2)$

    or the Schrödinger-Newton equation

    $ \begin{align} -\Delta u+u = \frac{1}{4\pi}\left(\frac{1}{|x|}\star u^{2}\right)u \quad \text{in}\; \mathbb{R}^3, \end{align}~~~~(3) $

    as $ \lambda\to0^+ $ or $ \lambda\to+\infty $. By means of the uniqueness and nondegeneracy of positive solutions for the Schrödinger equation (2) and the Schrödinger-Newton equation (3), we proved the uniqueness of positive ground states for (1) when $ \lambda $ is sufficiently close to $ 0 $ or $ +\infty $. Moreover, by the action of the linearized equation with respect to decomposition into spherical harmonics, we obtained the nondegeneracy of ground states.

    Mathematics Subject Classification: Primary: 35A02, 35B20; Secondary: 35J15, 35J20, 35J61.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] T. Akahori, S. Ibrahim, N. Ikoma, H. Kikuchi and H. Nawa, Uniqueness and nondegeneracy of ground states to nonlinear scalar field equations involving the Sobolev critical exponent in their nonlinearities for high frequencies, Calc. Var. Partial Differential Equations, 58 (2019), 32 pp. doi: 10.1007/s00526-019-1556-6.
    [2] T. Akahori, S. Ibrahim, H. Kikuchi and H. Nawa, Global dynamics above the ground state energy for the combined power type nonlinear Schrodinger equations with energy critical growth at low frequencies, Mem. Amer. Math. Soc., 272 (2021), v+130 pp. doi: 10.1090/memo/1331.
    [3] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. 
    [4] C. G. Boehmer and T. Harko, Can dark matter be a Bose-Einstein condensate, Journal of Cosmology and Astroparticle Physics, 2007 (2007), 025. 
    [5] P. H. Chavanis, Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions. I. Analytical results, Physical Review D, 84 (2011), 043531. 
    [6] M. M. Fall and E. Valdinoci, Uniqueness and nondegeneracy of positive solutions of $ (-\Delta)^s u+u = u^p$ in $\Bbb R^N$ when $s$ is close to 1, Comm. Math. Phys., 329 (2014), 383-404.  doi: 10.1007/s00220-014-1919-y.
    [7] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6 (1981), 883-901.  doi: 10.1080/03605308108820196.
    [8] B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.
    [9] H. Groemer, Geometric Applications of Fourier Series and Spherical Harmonics, Encyclopedia Math. Appl., 61. Cambridge University Press, 1996. doi: 10.1017/CBO9780511530005.
    [10] M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p = 0$ in ${\bf{R}}^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.
    [11] E. Lenzmann, Uniqueness of ground states for pseudorelativistic Hartree equations, Anal. PDE, 2 (2009), 1-27.  doi: 10.2140/apde.2009.2.1.
    [12] E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math., 57 (1976/77), 93-105.  doi: 10.1002/sapm197757293.
    [13] E. H. Lieb and M. Loss, Analysis, Grad. Stud. Math., 14. American Mathematical Society, Providence, RI, 2001. doi: 10.1090/gsm/014.
    [14] X. LiS. Ma and G. Zhang, Existence and qualitative properties of solutions for Choquard equations with a local term, Nonlinear Analysis: Real World Applications, 45 (2019), 1-25.  doi: 10.1016/j.nonrwa.2018.06.007.
    [15] P.-L. Lions, Solutions of hartree-fock equations for coulomb systems, Communications in Mathematical Physics, 109 (1987), 33-97.  doi: 10.1007/BF01205672.
    [16] J. LouisJ. Zhang and X. Zhong, A global branch approach to normalized solutions for the Schrödinger equation, J. Math. Pures Appl., 183 (2024), 44-75.  doi: 10.1016/j.matpur.2024.01.004.
    [17] S. Ma and V. Moroz, Asymptotic profiles for Choquard equations with combined attractive nonlinearities, preprint, (2023), arXiv: 2302.13727.
    [18] L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467.  doi: 10.1007/s00205-008-0208-3.
    [19] C. Mercuri, V. Moroz and J. Van Schaftingen, Groundstates and radial solutions to nonlinear Schrödinger-Poisson-Slater equations at the critical frequency, Calc. Var. Partial Differential Equations, 55 (2016), Art. 146, 58 pp. doi: 10.1007/s00526-016-1079-3.
    [20] V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.  doi: 10.1016/j.jfa.2013.04.007.
    [21] V. Moroz and J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 367 (2015), 6557-6579.  doi: 10.1090/S0002-9947-2014-06289-2.
    [22] V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.  doi: 10.1007/s11784-016-0373-1.
    [23] S. Pekar, Untersuchung über die Elekronentheorie der Kristalle, Akedemie Verlag, Berlin, 1954.
    [24] P. Quittner and P. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States, Birkhäuser Adv. Texts Basler Lehrbücher, Birkhäuser Verlag, Basel, 2007.
    [25] P. Quittner and P. Souplet, Symmetry of components for semilinear elliptic systems, SIAM Journal on Mathematical Analysis, 44 (2012), 2545-2559.  doi: 10.1137/11085428X.
    [26] R. Ruffini and S. Bonazzola, Systems of self-gravitating particles in general relativity and the concept of an equation of state, Physical Review, 187 (1969), 1767-1783. 
    [27] D. Ruiz, On the Schrödinger-Poisson-Slater system: Behavior of minimizers, radial and nonradial cases, Arch. Ration. Mech. Anal., 198 (2010), 349-368.  doi: 10.1007/s00205-010-0299-5.
    [28] P. Tod and I. M. Moroz, An analytical approach to the Schrödinger-Newton equations, Nonlinearity, 12 (1999), 201-216.  doi: 10.1088/0951-7715/12/2/002.
    [29] G. Vaira, Existence of bound states for Schrödinger-Newton type systems, Adv. Nonlinear Stud., 13 (2013), 495-516.  doi: 10.1515/ans-2013-0214.
    [30] J. Wei and M. Winter, Strongly interacting bumps for the Schrödinger-Newton equations, J. Math. Phys., 50 (2009), 012905, 22 pp. doi: 10.1063/1.3060169.
    [31] X. Z. Wang, Cold Bose stars: Self-gravitating Bose-Einstein condensates, Physical Review D, 64(12) (2001), 124009, 22 pp.
  • 加载中
SHARE

Article Metrics

HTML views(1104) PDF downloads(185) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return