A reaction-diffusion system in a domain with randomly located obstacles was considered. When studying the problem, we sat the homogeneous Dirichlet condition on the outer boundary of the domain and the Neumann condition on the boundary of the cavities. Under such assumptions, it was proven that random trajectory attractors of this system with random coefficients converge in some weak topology to the deterministic trajectory attractor of a homogenized reaction-diffusion system with deterministic coefficients in a homogeneous domain without obstacles. In the case of uniqueness, we obtained weak convergence of random global attractors to a deterministic global attractor.
Bibliography: 19 titles.
Citation: |
[1] |
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland Publishing Co., Amsterdam, 1992.
![]() ![]() |
[2] |
K. A. Bekmaganbetov, G. A. Chechkin and V. V. Chepyzhov, Strong convergence of Trajectory attractors for reaction-diffusion systems with random rapidly oscillating terms, Communications on Pure and Applied Analysis (CPAA), 19 (2020), 2419-2443.
doi: 10.3934/cpaa.2020106.![]() ![]() ![]() |
[3] |
K. A. Bekmaganbetov, G. A. Chechkin and V. V. Chepyzhov, "Strange term" in Homogenization of attractors of reaction-diffusion equation in perforated domain, Chaos, Solitons & Fractals, 140 (2020), Art. No 110208.
doi: 10.1016/j.chaos.2020.110208.![]() ![]() ![]() |
[4] |
K. A. Bekmaganbetov, G. A. Chechkin, V. V. Chepyzhov and A. Yu. Goritsky, Homogenization of trajectory attractors of 3D Navier–Stokes system with randomly oscillating force, Discrete and Continuous Dynamical Systems. Series A (DCDS-A), 37 (2017), 2375-2393.
doi: 10.3934/dcds.2017103.![]() ![]() ![]() |
[5] |
K. A. Bekmaganbetov, G. A. Chechkin and A. A. Tolemis, Attractors of Ginzburg-Landau equations with oscillating terms in porous media. Homogenization procedure, Applicable Analysis, 103 (2024), 29-44.
doi: 10.1080/00036811.2023.2173182.![]() ![]() ![]() |
[6] |
K. A. Bekmaganbetov, V. V. Chepyzhov and G. A. Chechkin, Strong convergence of attractors of reaction- diffusion system with rapidly oscillating terms in an orthotropic porous medium, Izv. Math., 86 (2022), 1072-1101.
doi: 10.4213/im9163.![]() ![]() ![]() |
[7] |
A. G. Beliaev, A. L. Piatnitskii and G. A. Chechkin, Averaging in a perforated domain with an oscillating third boundary condition, Russian Academy of Sciences. Sbornik. Mathematics, 192 (2001), 933-949, (Translated from Matematicheskii Sbornik, 192 (2001), 3-20).
doi: 10.1070/SM2001v192n07ABEH000576.![]() ![]() ![]() |
[8] |
A. Yu. Beliaev and S. M. Kozlov, Darcy equation for random porous media, Comm. Pure Appl. Math., 49 (1996), 1-34.
doi: 10.1002/(SICI)1097-0312(199601)49:1<1::AID-CPA1>3.0.CO;2-J.![]() ![]() ![]() |
[9] |
F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Applied Mathematical Sciences, 183. Springer, New York, NY, 2013.
doi: 10.1007/978-1-4614-5975-0.![]() ![]() ![]() |
[10] |
G. A. Chechkin, T. P. Chechkina, C. D'Apice, U. De Maio and T. A. Mel'nyk, Asymptotic analysis of a boundary value problem in a cascade thick junction with a random transmission zone, Applicable Analysis, 88 (2009), 1543-1562.
doi: 10.1080/00036810902994268.![]() ![]() ![]() |
[11] |
G. A. Chechkin, T. P. Chechkina, T. S. Ratiu and M. S. Romanov, Nematodynamics and random homogenization, Applicable Analysis, 95 (2016), 2243-2253.
doi: 10.1080/00036811.2015.1036241.![]() ![]() ![]() |
[12] |
V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49. American Mathematical Society, Providence, RI, 2002.
doi: 10.1090/coll/049.![]() ![]() ![]() |
[13] |
V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for reaction-diffusion systems, Topol. Methods Nonlinear Anal. J. Julius Schauder Center., 7 (1996), 49-76.
doi: 10.12775/TMNA.1996.002.![]() ![]() ![]() |
[14] |
B. Fiedler and M. I. Vishik, Quantitative homogenization of global attractors for reaction–diffusion systems with rapidly oscillating terms, Asymptotic Anal., 34 (2003), 159-185.
![]() ![]() |
[15] |
V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, New-York, 1994.
doi: 10.1007/978-3-642-84659-5.![]() ![]() ![]() |
[16] |
J.-L. Lions, Quelques Méthodes de Résolutions Des Problèmes Aux Limites non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.
![]() ![]() |
[17] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2$^{nd}$ edition. Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3.![]() ![]() ![]() |
[18] |
M. I. Vishik and V. V. Chepyzhov, Averaging of trajectory attractors of evolution equations with rapidly oscillating terms, Sb. Math., 192 (2001), 11-47.
doi: 10.1070/SM2001v192n01ABEH000534.![]() ![]() ![]() |
[19] |
V. V. Zhikov, Averaging in perforated random domains of general type, Math. Notes, 53 (1993), 30-42, (translated from Mat. Zametki, 53 (1993), 41-58).
doi: 10.1007/BF01208520.![]() ![]() ![]() |