\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stability of P-cyclic closed characteristics on P-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $

  • *Corresponding author: Zhenxiong Li

    *Corresponding author: Zhenxiong Li 
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this paper, let $ P = \begin{pmatrix}\cos\frac{2\pi}{p} &-\sin\frac{2\pi}{p}\\ \sin\frac{2\pi}{p} &\cos\frac{2\pi}{p} \end{pmatrix}^{\diamond n} $ be a rotational matrix, and $ \Sigma \subset\mathbb{R}^{2n} $ be a $ P $-symmetric compact convex hypersurface which is $ (r,R) $-pinched with $ \frac{R}{r}<\sqrt{\frac{2p+1}{p+1}} $, where the integer $ p\geq 2 $. Then $ \Sigma $ carries at least two elliptic $ P $-cyclic closed characteristics; moreover, $ \Sigma $ carries at least $ \lceil\frac{(n-1)p}{2(p+1)}\rceil+\lceil \frac{n-1}{2} \rceil $ non-hyperbolic $ P $-cyclic closed characteristics. The proofs are based on the Maslov $ P $-index iteration theory and comparison theorems on indices.

    Mathematics Subject Classification: Primary: 37J12, 37J25; Secondary: 53D12.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. Abreu and L. Macarini, Dynamical implications of convexity beyond dynamical convexity, Calc. Var. Partial Differential Equations, 61 (2022), Paper No. 116, 47 pp. doi: 10.1007/s00526-022-02228-1.
    [2] W. BallmannG. Thorbergsson and W. Ziller, Closed geodesics on positively curved manifolds, Ann. of Math., 116 (1982), 121-186.  doi: 10.2307/2007062.
    [3] G. Dell'AntonioB. D'Onofrio and I. Ekeland, Les systèmes hamiltoniens convexes et pairs ne sont pas ergodiques en général, C. R. Acad. Sci. Paris Sér. I Math., 315 (1992), 1413-1415. 
    [4] Y. Dong, $P$-index theory for linear Hamiltonian systems and multiple solutions for nonlinear Hamiltonian systems, Nonlinearity, 19 (2006), 1275-1294.  doi: 10.1088/0951-7715/19/6/004.
    [5] I. Ekeland, An index theory for periodic solutions of convex Hamiltonian systems, Proc. Sympos. Pure Math., 45, Part 1 (1986), 395-423.  doi: 10.1090/pspum/045.1/843575.
    [6] I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer-Verlag. Berlin. 1990. doi: 10.1007/978-3-642-74331-3.
    [7] X. Hu and Y. Ou, Stability of closed characteristics on compact convex hypersurfaces in ${\bf{R}}^{2n}$, J. Fixed Point Theory Appl., 19 (2017), 585-600.  doi: 10.1007/s11784-016-0366-0.
    [8] C. Liu, Maslov $P$-index theory for a symplectic path with applications, Chinese Ann. Math. Ser. B, 27 (2006), 441-458.  doi: 10.1007/s11401-004-0365-0.
    [9] C. LiuY. Long and C. Zhu, Multiplicity of closed characteristics on symmetric convex hypersurfaces in ${\bf{R}}^{2n}$, Math. Ann., 323 (2002), 201-215.  doi: 10.1007/s002089100257.
    [10] C. Liu and S. Tang, Maslov $(P, \omega)$-index theory for symplectic paths, Adv. Nonlinear Stud., 15 (2015), 963-990.  doi: 10.1515/ans-2015-0412.
    [11] C. Liu and S. Tang, Iteration inequalities of the Maslov $P$-index theory with applications, Nonlinear Anal., 127 (2015), 215-234.  doi: 10.1016/j.na.2015.06.029.
    [12] H. Liu, Stability of symmetric closed characteristics on symmetric compact convex hypersurfaces in $\mathbb{R}^{2n}$ under a pinching condition, Acta Math. Sin. (Engl. Ser.), 28 (2012), 885-900.  doi: 10.1007/s10114-011-0494-9.
    [13] H. Liu, C. Wang and D. Zhang, Elliptic and non-hyperbolic closed characteristics on compact convex P-cyclic symmetric hypersurfaces in ${\bf{R}}^{2n}$, Calc. Var. Partial Differential Equations, 59 (2020), Paper No. 24, 20 pp. doi: 10.1007/s00526-019-1681-2.
    [14] H. Liu and H. Zhang, Multiple $P$-cyclic symmetric closed characteristics on compact convex $P$-cyclic symmetric hypersurfaces in $\Bbb{R}^{2n}$, Front. Math. China, 15 (2020), 1155-1173.  doi: 10.1007/s11464-020-0885-2.
    [15] Y. Long, Bott formula of the Maslov-type index theory, Pacific J. Math., 187 (1999), 113-149.  doi: 10.2140/pjm.1999.187.113.
    [16] Y. Long, Precise iteration formulae of the Maslov-type index theory and ellipticity of closed characteristics, Adv. Math., 154 (2000), 76-131.  doi: 10.1006/aima.2000.1914.
    [17] Y. Long, Index Theory for Symplectic Paths with Applications, Progress in Math. 207, Birkhäuser. Basel. 2002. doi: 10.1007/978-3-0348-8175-3.
    [18] Y. Long and C. Zhu, Closed characteristics on compact convex hypersurfaces in ${\bf{R}}^{2n}$, Ann. of Math., 155 (2002), 317-368.  doi: 10.2307/3062120.
    [19] W. Wang, Stability of closed characteristics on compact convex hypersurfaces in $\mathbb{R}^6$, J. Eur. Math. Soc. (JEMS), 11 (2009), 575-596.  doi: 10.4171/jems/161.
    [20] W. Wang, Stability of closed characteristics on compact hypersurfaces in ${\bf{R}}^{2n}$ under a pinching condition, Adv. Nonlinear Stud., 10 (2010), 263-272.  doi: 10.1515/ans-2010-0202.
    [21] W. Wang, Closed trajectories on symmetric convex Hamiltonian energy surfaces, Discrete Contin. Dyn. Syst., 32 (2012), 679-701.  doi: 10.3934/dcds.2012.32.679.
    [22] W. Wang, Irrationally elliptic closed characteristics on compact convex hypersurfaces in ${\bf{R}}^{2n}$, J. Funct. Anal., 282 (2022), Paper No. 109269, 29 pp. doi: 10.1016/j.jfa.2021.109269.
    [23] D. Zhang, $P$-cyclic symmetric cloesed characteristics on ompact $P$-cyclic symmetric hypersurface in ${\bf{R}}^{2n}$, Discrete Contin. Dyn. Syst., 33 (2013), 947-964.  doi: 10.3934/dcds.2013.33.947.
  • 加载中
SHARE

Article Metrics

HTML views(1241) PDF downloads(158) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return