In this paper, let $ P = \begin{pmatrix}\cos\frac{2\pi}{p} &-\sin\frac{2\pi}{p}\\ \sin\frac{2\pi}{p} &\cos\frac{2\pi}{p} \end{pmatrix}^{\diamond n} $ be a rotational matrix, and $ \Sigma \subset\mathbb{R}^{2n} $ be a $ P $-symmetric compact convex hypersurface which is $ (r,R) $-pinched with $ \frac{R}{r}<\sqrt{\frac{2p+1}{p+1}} $, where the integer $ p\geq 2 $. Then $ \Sigma $ carries at least two elliptic $ P $-cyclic closed characteristics; moreover, $ \Sigma $ carries at least $ \lceil\frac{(n-1)p}{2(p+1)}\rceil+\lceil \frac{n-1}{2} \rceil $ non-hyperbolic $ P $-cyclic closed characteristics. The proofs are based on the Maslov $ P $-index iteration theory and comparison theorems on indices.
Citation: |
[1] |
M. Abreu and L. Macarini, Dynamical implications of convexity beyond dynamical convexity, Calc. Var. Partial Differential Equations, 61 (2022), Paper No. 116, 47 pp.
doi: 10.1007/s00526-022-02228-1.![]() ![]() ![]() |
[2] |
W. Ballmann, G. Thorbergsson and W. Ziller, Closed geodesics on positively curved manifolds, Ann. of Math., 116 (1982), 121-186.
doi: 10.2307/2007062.![]() ![]() ![]() |
[3] |
G. Dell'Antonio, B. D'Onofrio and I. Ekeland, Les systèmes hamiltoniens convexes et pairs ne sont pas ergodiques en général, C. R. Acad. Sci. Paris Sér. I Math., 315 (1992), 1413-1415.
![]() ![]() |
[4] |
Y. Dong, $P$-index theory for linear Hamiltonian systems and multiple solutions for nonlinear Hamiltonian systems, Nonlinearity, 19 (2006), 1275-1294.
doi: 10.1088/0951-7715/19/6/004.![]() ![]() ![]() |
[5] |
I. Ekeland, An index theory for periodic solutions of convex Hamiltonian systems, Proc. Sympos. Pure Math., 45, Part 1 (1986), 395-423.
doi: 10.1090/pspum/045.1/843575.![]() ![]() ![]() |
[6] |
I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer-Verlag. Berlin. 1990.
doi: 10.1007/978-3-642-74331-3.![]() ![]() ![]() |
[7] |
X. Hu and Y. Ou, Stability of closed characteristics on compact convex hypersurfaces in ${\bf{R}}^{2n}$, J. Fixed Point Theory Appl., 19 (2017), 585-600.
doi: 10.1007/s11784-016-0366-0.![]() ![]() ![]() |
[8] |
C. Liu, Maslov $P$-index theory for a symplectic path with applications, Chinese Ann. Math. Ser. B, 27 (2006), 441-458.
doi: 10.1007/s11401-004-0365-0.![]() ![]() ![]() |
[9] |
C. Liu, Y. Long and C. Zhu, Multiplicity of closed characteristics on symmetric convex hypersurfaces in ${\bf{R}}^{2n}$, Math. Ann., 323 (2002), 201-215.
doi: 10.1007/s002089100257.![]() ![]() ![]() |
[10] |
C. Liu and S. Tang, Maslov $(P, \omega)$-index theory for symplectic paths, Adv. Nonlinear Stud., 15 (2015), 963-990.
doi: 10.1515/ans-2015-0412.![]() ![]() ![]() |
[11] |
C. Liu and S. Tang, Iteration inequalities of the Maslov $P$-index theory with applications, Nonlinear Anal., 127 (2015), 215-234.
doi: 10.1016/j.na.2015.06.029.![]() ![]() ![]() |
[12] |
H. Liu, Stability of symmetric closed characteristics on symmetric compact convex hypersurfaces in $\mathbb{R}^{2n}$ under a pinching condition, Acta Math. Sin. (Engl. Ser.), 28 (2012), 885-900.
doi: 10.1007/s10114-011-0494-9.![]() ![]() ![]() |
[13] |
H. Liu, C. Wang and D. Zhang, Elliptic and non-hyperbolic closed characteristics on compact convex P-cyclic symmetric hypersurfaces in ${\bf{R}}^{2n}$, Calc. Var. Partial Differential Equations, 59 (2020), Paper No. 24, 20 pp.
doi: 10.1007/s00526-019-1681-2.![]() ![]() ![]() |
[14] |
H. Liu and H. Zhang, Multiple $P$-cyclic symmetric closed characteristics on compact convex $P$-cyclic symmetric hypersurfaces in $\Bbb{R}^{2n}$, Front. Math. China, 15 (2020), 1155-1173.
doi: 10.1007/s11464-020-0885-2.![]() ![]() ![]() |
[15] |
Y. Long, Bott formula of the Maslov-type index theory, Pacific J. Math., 187 (1999), 113-149.
doi: 10.2140/pjm.1999.187.113.![]() ![]() ![]() |
[16] |
Y. Long, Precise iteration formulae of the Maslov-type index theory and ellipticity of closed characteristics, Adv. Math., 154 (2000), 76-131.
doi: 10.1006/aima.2000.1914.![]() ![]() ![]() |
[17] |
Y. Long, Index Theory for Symplectic Paths with Applications, Progress in Math. 207, Birkhäuser. Basel. 2002.
doi: 10.1007/978-3-0348-8175-3.![]() ![]() ![]() |
[18] |
Y. Long and C. Zhu, Closed characteristics on compact convex hypersurfaces in ${\bf{R}}^{2n}$, Ann. of Math., 155 (2002), 317-368.
doi: 10.2307/3062120.![]() ![]() ![]() |
[19] |
W. Wang, Stability of closed characteristics on compact convex hypersurfaces in $\mathbb{R}^6$, J. Eur. Math. Soc. (JEMS), 11 (2009), 575-596.
doi: 10.4171/jems/161.![]() ![]() ![]() |
[20] |
W. Wang, Stability of closed characteristics on compact hypersurfaces in ${\bf{R}}^{2n}$ under a pinching condition, Adv. Nonlinear Stud., 10 (2010), 263-272.
doi: 10.1515/ans-2010-0202.![]() ![]() ![]() |
[21] |
W. Wang, Closed trajectories on symmetric convex Hamiltonian energy surfaces, Discrete Contin. Dyn. Syst., 32 (2012), 679-701.
doi: 10.3934/dcds.2012.32.679.![]() ![]() ![]() |
[22] |
W. Wang, Irrationally elliptic closed characteristics on compact convex hypersurfaces in ${\bf{R}}^{2n}$, J. Funct. Anal., 282 (2022), Paper No. 109269, 29 pp.
doi: 10.1016/j.jfa.2021.109269.![]() ![]() ![]() |
[23] |
D. Zhang, $P$-cyclic symmetric cloesed characteristics on ompact $P$-cyclic symmetric hypersurface in ${\bf{R}}^{2n}$, Discrete Contin. Dyn. Syst., 33 (2013), 947-964.
doi: 10.3934/dcds.2013.33.947.![]() ![]() ![]() |