We investigate the well-posedness of the 3d co-rotational Beris-Edwards system for incompressible nematic liquid crystal flows with the Landau-De Gennes bulk potential. The system under consideration consists of the Navier–Stokes equations for the fluid velocity $ \boldsymbol u $, and an evolution equation for the $ Q $-tensor order parameter. We prove the existence of solutions to the Cauchy problem of the system with initial data $ ( \boldsymbol u_0,Q_0) $ having small $ L_{uloc}^3(\mathbb{R}^3) $-norm of $ ( \boldsymbol u_0,\nabla Q_0) $. Moreover, the uniqueness of $ L^3_{uloc} $-solutions is obtained.
Citation: |
[1] |
H. Abels, G. Dolzmann and Y. Liu, Well-posedness of a fully coupled Navier–Stokes/Q-tensor system with inhomogeneous boundary data, SIAM J. Math. Anal., 46 (2014), 3050-3077.
doi: 10.1137/130945405.![]() ![]() ![]() |
[2] |
H. Abels, G. Dolzmann and Y. Liu, Strong solutions for the Beris-Edwards model for nematic liquid crystals with homogeneous Dirichlet boundary conditions, Adv. Differential Equations, 21 (2016), 109-152.
doi: 10.57262/ade/1448323166.![]() ![]() ![]() |
[3] |
J. M. Ball, Mathematics of liquid crystal, Molecular Crystals and Liquid Crystals, 647 (2016), 1-27.
doi: 10.1080/15421406.2017.1289425.![]() ![]() |
[4] |
J. M. Ball and A. Majumdar, Nematic liquid crystals: From Maier-Saupe to a continuum theory, Molecular Crystals and Liquid Crystals, 525 (2010), 1-11.
doi: 10.1080/15421401003795555.![]() ![]() |
[5] |
J. M. Ball and A. Zarnescu, Orientability and energy minimization in liquid crystal models, Arch. Rational Mech. Anal., 202 (2011), 493-535.
doi: 10.1007/s00205-011-0421-3.![]() ![]() ![]() |
[6] |
A. N. Beris and B. J. Edwards, Thermodynamics of Flowing Systems: With Internal Microstructure, Oxford University Press, 1994.
doi: 10.1093/oso/9780195076943.001.0001.![]() ![]() ![]() |
[7] |
L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831.
doi: 10.1002/cpa.3160350604.![]() ![]() |
[8] |
C. Cavaterra, E. Rocca, H. Wu and X. Xu, Global strong solutions of the full Navier–Stokes and Q-tensor system for nematic liquid crystal flows in two dimensions, SIAM J. Math. Anal., 48 (2016), 1368-1399.
doi: 10.1137/15M1048550.![]() ![]() |
[9] |
G.-Q. Chen, A. Majumdar, D. Wang and R. Zhang, Global existence and regularity of solutions for active liquid crystals, J. Differential Equations, 263 (2017), 202-239.
doi: 10.1016/j.jde.2017.02.035.![]() ![]() |
[10] |
M. Dai, E. Feireisl, E. Rocca, G. Schimperna and M. E. Schonbek, On asymptotic isotropy for a hydrodynamic model of liquid crystals, Asymptot. Anal., 97 (2016), 189-210.
doi: 10.3233/ASY-151348.![]() ![]() ![]() |
[11] |
P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd edition, Oxford University Press, 1995.
doi: 10.1093/oso/9780198520245.001.0001.![]() ![]() |
[12] |
H. Du, X. Hu and C. Wang, Suitable weak solutions for the co-rotational Beris-Edwards system in dimension three, Arch. Rational Mech. Anal., 238 (2020), 749-803.
doi: 10.1007/s00205-020-01554-y.![]() ![]() ![]() |
[13] |
J. Ericksen, Continuum theory of nematic liquid crystals, Res. Mechanica, 21 (1987), 381-392.
![]() |
[14] |
F. Guillen-Gonzalez and M. A. Rodriguez-Bellido, A uniqueness and regularity criterion for Q-tensor models with Neumann boundary conditions, Differential Integral Equations, 28 (2015), 537-552.
doi: 10.57262/die/1427744100.![]() ![]() ![]() |
[15] |
F. Guillen-Gonzalez and M. A. Rodriguez-Bellido, Weak time regularity and uniqueness for a Q-tensor model, SIAM J. Math. Anal., 46 (2014), 3540-3567.
doi: 10.1137/13095015X.![]() ![]() ![]() |
[16] |
J. L. Hineman and C. Wang, Well-posedness of nematic liquid crystal flow in $L^3_{uloc}(\mathbb{R}^3)$, Arch. Rational Mech. Anal., 210 (2013), 177-218.
doi: 10.1007/s00205-013-0643-7.![]() ![]() |
[17] |
M.-C. Hong and Y. Mei, Well-posedness of the Ericksen-Leslie system with the Oseen-Frank energy in $L^3_{uloc}(\mathbb{R}^3)$, Calc. Var. Partial Differential Equations, 58 (2019), Paper No. 3, 38 pp.
doi: 10.1007/s00526-018-1453-4.![]() ![]() ![]() |
[18] |
J. Huang and S. Ding, Global well-posedness for the dynamical Q-tensor model of liquid crystals, Sci. China Math., 58 (2015), 1349-1366.
doi: 10.1007/s11425-015-4990-8.![]() ![]() ![]() |
[19] |
G. Iyer, X. Xu and A. D. Zarnescu, Dynamic cubic instability in a 2D Q-tensor model for liquid crystals, Math. Models Methods Appl. Sci., 25 (2015), 1477-1517.
doi: 10.1142/S0218202515500396.![]() ![]() ![]() |
[20] |
P. G. Lemarié-Rieusset, Recent Developments in the Navier–Stokes Problem, Chapman & Hall/CRC Res. Notes Math., Vol 431, Chapman & Hall/CRC, Boca Raton, FL, 2002.
![]() ![]() |
[21] |
F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28 (1968), 265-283.
doi: 10.1007/BF00251810.![]() ![]() ![]() |
[22] |
J. Li, E. S. Titi and Z. Xin, On the uniqueness of weak solutions to the Ericksen-Leslie liquid crystal model in $\mathbb{R}^2$, Math. Models Methods Appl. Sci., 26 (2016), 803-822.
doi: 10.1142/S0218202516500184.![]() ![]() ![]() |
[23] |
F. Lin, J. Lin and C. Wang, Liquid crystal flows in two dimensions, Arch. Rational Mech. Anal., 197 (2010), 297-336.
doi: 10.1007/s00205-009-0278-x.![]() ![]() |
[24] |
F. Lin and C. Wang, Global existence of weak solutions of the nematic liquid crystal flow in dimension three, Comm. Pure Appl. Math., 69 (2016), 1532-1571.
doi: 10.1002/cpa.21583.![]() ![]() |
[25] |
Q. Liu, C. Wang, X. Zhang and J. Zhou, On optimal boundary control of Ericksen-Leslie system in dimension two, Calc. Var. Partial Differential Equations, 59 (2020), Paper No. 38, 64 pp.
doi: 10.1007/s00526-019-1676-z.![]() ![]() ![]() |
[26] |
A. Majumdar and A. Zarnescu, Landau-de Gennes theory of nematic liquid crystals: The Oseen-Frank limit and beyond, Arch. Rational Mech. Anal., 196 (2010), 227-280.
doi: 10.1007/s00205-009-0249-2.![]() ![]() |
[27] |
N. J. Mottram and C. J. P. Newton, Introduction to $Q$-tensor Theory, arXiv: 1409.3542, 2014.
![]() |
[28] |
M. Paicu and A. Zarnescu, Energy dissipation and regularity for a coupled Navier-Stokes and Q-tensor system, Arch. Rational Mech. Anal., 203 (2012), 45-67.
doi: 10.1007/s00205-011-0443-x.![]() ![]() ![]() |
[29] |
M. Paicu and A. Zarnescu, Global existence and regularity for the full coupled Navier-Stokes and Q-tensor system, SIAM J. Math. Anal., 43 (2011), 2009-2049.
doi: 10.1137/10079224X.![]() ![]() ![]() |
[30] |
G. Seregin and V. Šverśk, On global weak solutions to the Cauchy problem for the Navier–Stokes equations with large $L_3$-initial data, Nonlinear Anal., 154 (2017), 269-296.
doi: 10.1016/j.na.2016.01.018.![]() ![]() ![]() |
[31] |
E. Stein, Singular Integrals and Differentiabiblity Properties of Functions, Princeton University Press, Princeton, 1970.
![]() |
[32] |
W. Wang, P. Zhang and Z. Zhang, Rigorous derivation from Landau-De Gennes theory to Ericksen-Leslie theory, SIAM J. Math. Anal., 47 (2015), 127-158.
doi: 10.1137/13093529X.![]() ![]() ![]() |
[33] |
M. Wilkinson, Strictly physical global weak solutions of a Navier–Stokes Q-tensor system with singular potential, Arch. Rational Mech. Anal., 218 (2015), 487-526.
doi: 10.1007/s00205-015-0864-z.![]() ![]() ![]() |
[34] |
H. Wu, X. Xu and A. Zarnescu, Dynamics and flow effects in the Beris-Edwards system modeling nematic liquid crystals, Arch. Rational Mech. Anal., 231 (2019), 1217-1267.
doi: 10.1007/s00205-018-1297-2.![]() ![]() ![]() |
[35] |
Y. Xiao, Global strong solution to the three-dimensional liquid crystal flows of $Q$-tensor model, J. Differential Equations, 262 (2017), 1291-1316.
doi: 10.1016/j.jde.2016.10.011.![]() ![]() ![]() |
[36] |
A. Zarnescu, Topics in the Q-tensor theory of liquid crystals, Topics in Mathematical Modeling and Analysis, 187-252, Jindřich Nečas Cent. Math. Model. Lect. Notes, 7, Matfyzpress, Prague, 2012.
![]() ![]() |