\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Optimal boundary regularity and a Hopf-type lemma for Dirichlet problems involving the logarithmic Laplacian

  • *Corresponding author: Alberto Saldaña

    *Corresponding author: Alberto Saldaña
Abstract / Introduction Full Text(HTML) Figure(4) Related Papers Cited by
  • We study the optimal boundary regularity of solutions to Dirichlet problems involving the logarithmic Laplacian. Our proofs are based on the construction of suitable barriers via the Kelvin transform and direct computations. As applications of our results, we show a Hopf-type lemma for nonnegative weak solutions and the uniqueness of solutions to some nonlinear problems.

    Mathematics Subject Classification: Primary: 35S15, 35B65; Secondary: 35A02.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The shape of the initial barriers for $ N = 1 $ and $ N = 2 $

    Figure 2.  The Kelvin transform can be used to obtain a new barrier. In the picture, the dotted line represents the boundary of the unitary circle. The red line segment (representing a subset of a hyperplane) is sent with the Kelvin transform to the red half-circle (representing a halfsphere)

    Figure 3.  The function $ \ell $

    Figure 4.  Domains of integration

  • [1] N. AbatangeloS. DipierroM. M. FallS. Jarohs and A. Saldaña, Positive powers of the Laplacian in the half-space under Dirichlet boundary conditions, Discrete and Continuous Dynamical Systems, 39 (2019), 1205-1235.  doi: 10.3934/dcds.2019052.
    [2] F. Angeles and A. Saldaña, Small order limit of fractional Dirichlet sublinear-type problems, Fract. Calc. Appl. Anal., 26 (2023), 1594-1631.  doi: 10.1007/s13540-023-00169-w.
    [3] K. Bogdan and T. Ẑak, On Kelvin transformation, J. Theor Probab, 19 (2006), 89-120.  doi: 10.1007/s10959-006-0003-8.
    [4] D. BonheureJ. FöldesE. Moreira dos SantosA. Saldaña and H. Tavares, Paths to uniqueness of critical points and applications to partial differential equations, Trans. Amer. Math. Soc., 370 (2018), 7081-7127.  doi: 10.1090/tran/7231.
    [5] C. Bucur, Some observations on the Green function for the ball in the fractional Laplace framework, Commun. Pure Appl. Anal., 15 (2016), 657-699.  doi: 10.3934/cpaa.2016.15.657.
    [6] H. A. Chang-Lara and A. Saldaña, Classical solutions to integral equations with zero order kernels, Mathematische Annalen, 389 (2024), 1463–1515. doi: 10.1007/s00208-023-02677-9.
    [7] H. Chen, Taylor's expansions of Riesz convolution and the fractional Laplacians with respect to the order, arXiv preprint, arXiv: 2307.06198, 2023.
    [8] H. Chen, D. Hauer and T. Weth, An extension problem for the logarithmic Laplacian, arXiv preprint, arXiv: 2312.15689, 2023.
    [9] H. Chen and L. Véron, The cauchy problem associated to the logarithmic laplacian with an application to the fundamental solution, Journal of Functional Analysis, 287 (2024), 110470.  doi: 10.1016/j.jfa.2024.110470.
    [10] H. Chen and T. Weth, The Dirichlet problem for the logarithmic Laplacian, Comm. Partial Differential Equations, 44 (2019), 1100-1139.  doi: 10.1080/03605302.2019.1611851.
    [11] E. Correa and A. De Pablo, Nonlocal operators of order near zero, Journal of Mathematical Analysis and Applications, 461 (2018), 837-867.  doi: 10.1016/j.jmaa.2017.12.011.
    [12] J. Dávila, L. López Ríos and Y. Sire, Bubbling solutions for nonlocal elliptic problems, Revista Matemática Iberoamericana, 33 (2017), 509-546. doi: 10.4171/rmi/947.
    [13] A. DelaTorre and E. Parini, Uniqueness of least energy solutions to the fractional Lane-Emden equation in the ball, arXiv preprint, arXiv: 2310.02228, 2024.
    [14] A. DiebI. Ianni and A. Saldaña, Uniqueness and nondegeneracy for Dirichlet fractional problems in bounded domains via asymptotic methods, Nonlinear Analysis, 236 (2023), 113354.  doi: 10.1016/j.na.2023.113354.
    [15] A. Dieb, I. Ianni and A. Saldaña, Uniqueness and nondegeneracy of least-energy solutions to fractional Dirichlet problems, arXiv preprint, arXiv: 2310.01214, 2023.
    [16] M. M. Fall and S. Jarohs, Overdetermined problems with fractional Laplacian, ESAIM: Control, Optimisation and Calculus of Variations, 21 (2015), 924-938.  doi: 10.1051/cocv/2014048.
    [17] M. M. Fall and T. Weth, Nonradial nondegeneracy and uniqueness of positive solutions to a class of fractional semilinear equations, arXiv preprint, arXiv: 2310.10577, 2023.
    [18] M. M. Fall and T. Weth, Second radial eigenfunctions to a fractional Dirichlet problem and uniqueness for a semilinear equation, arXiv preprint, arXiv: 2405.02120, 2024.
    [19] P. A. Feulefack, The fractional logarithmic Schrodinger operator: Properties and functional spaces, arXiv preprint, arXiv: 2310.02481, 2023.
    [20] P. A. Feulefack, The logarithmic Schrödinger operator and associated Dirichlet problems, Journal of Mathematical Analysis and Applications, 517 (2023), 126656.  doi: 10.1016/j.jmaa.2022.126656.
    [21] P. A. Feulefack and S. Jarohs, Nonlocal operators of small order, Ann. Mat. Pura Appl. (4), 202 (2023), 1501-1529.  doi: 10.1007/s10231-022-01290-y.
    [22] P. A. Feulefack, S. Jarohs and T. Weth, Small order asymptotics of the Dirichlet eigenvalue problem for the fractional Laplacian, Journal of Fourier Analysis and Applications, 28 (2022), Paper No. 18, 44 pp. doi: 10.1007/s00041-022-09908-8.
    [23] V. Hernández-Santamaría, S. Jarohs, A. Saldaña and L. Sinsch, FEM for 1D-problems involving the logarithmic Laplacian: Error estimates and numerical implementation, arXiv preprint, arXiv: 2311.13079, 2023.
    [24] V. Hernández Santamaría and A. Saldaña, Small order asymptotics for nonlinear fractional problems, Calculus of Variations and Partial Differential Equations, 61 (2022), 1-26.  doi: 10.1007/s00526-022-02192-w.
    [25] S. Jarohs, A. Saldaña and T. Weth, A new look at the fractional Poisson problem via the logarithmic Laplacian, J. Funct. Anal., 279 (2020), 108732, 50 pp. doi: 10.1016/j.jfa.2020.108732.
    [26] S. Jarohs, A. Saldaña and T. Weth, Differentiability of the nonlocal-to-local transition in fractional Poisson problems, arXiv preprint, arXiv: 2311.18476, 2023.
    [27] M. Kassmann and A. Mimica, Intrinsic scaling properties for nonlocal operators, J. Eur. Math. Soc. (JEMS), 19 (2017), 983-1011.  doi: 10.4171/jems/686.
    [28] P. Kim and A. Mimica, Green function estimates for subordinate Brownian motions: Stable and beyond, Transactions of the American Mathematical Society, 366 (2014), 4383-4422.  doi: 10.1090/S0002-9947-2014-06017-0.
    [29] A. Laptev and T. Weth, Spectral properties of the logarithmic Laplacian, Anal. Math. Phys., 11 (2021), Paper No. 133, 24 pp. doi: 10.1007/s13324-021-00527-y.
    [30] X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, Journal de Mathématiques Pures et Appliquées, 101 (2014), 275-302. doi: 10.1016/j.matpur.2013.06.003.
  • 加载中

Figures(4)

SHARE

Article Metrics

HTML views(553) PDF downloads(247) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return