In this paper, we studied an integral equation of the Allen-Cahn type
$ \begin{align*} u(x) = \overrightarrow{l} +C_{*}\int_{{\mathbb{R}}^n}\frac{u(y)(1-|u(y)|^2)|1-|u(y)|^2|^{p-2}} {|x-y|^{n-\alpha}}dy. \end{align*} $
Here, $ u:{\mathbb{R}}^n\rightarrow {\mathbb{R}}^k $, $ k \geq 1 $, $ n \geq 2 $, $ \alpha \in (0,n) $ and $ p-1>n/(n-\alpha) $. In addition, $ \overrightarrow{l}\in {\mathbb{R}}^k $ is a constant vector and $ C_{*} \neq 0 $ is a real constant. This equation is associated with the following fractional-order equation
$ (-\Delta)^{\frac{\alpha}{2}}u = u(1-|u|^2)|1-|u|^2|^{p-2}. $
Both of them play important roles in the study of phase transition in fractal media and the competition model of biological communities. We were concerned about two properties of those equations: One is the Lipschitz regularity of the bounded solutions; the other is the Liouville theorem. The regularity lifting lemma introduced by Ma-Chen-Li and the Pohozaev identity in integral form come into play here.
Citation: |
[1] |
F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices, Birkhauser, Boston, 1994.
doi: 10.1007/978-1-4612-0287-5.![]() ![]() ![]() |
[2] |
K. Bogdan, T. Kulczycki and A. Nowak, Gradient estimates for harmonic and q-harmonic functions of symmetric stable processes, Illinois J. Math., 46 (2002), 541-556.
doi: 10.1215/ijm/1258136210.![]() ![]() ![]() |
[3] |
H. Brezis, Comments on two notes by L. Ma and X. Xu, C. R. Math. Acad. Sci. Paris, 349 (2011), 269-271.
doi: 10.1016/j.crma.2011.01.024.![]() ![]() ![]() |
[4] |
H. Brezis, F. Merle and T. Rivière, Quantization effects for $-\Delta u = u(1-|u|^2)$ on ${\mathbb{R}}^2$, Arch. Rational Mech. Anal., 126 (1994), 35-58.
doi: 10.1007/BF00375695.![]() ![]() ![]() |
[5] |
Q. Chen and Y. Lei, Asymptotic estimates for an integral equation in theory of phase transition, Nonlinearity, 34 (2021), 3953-3968.
doi: 10.1088/1361-6544/abffe1.![]() ![]() |
[6] |
W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, AIMS Book Series on Diff. Equa. Dyn. Sys., Vol. 4, 2010.
![]() ![]() |
[7] |
W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst., 12 (2005), 347-354.
doi: 10.3934/dcds.2005.12.347.![]() ![]() |
[8] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116.![]() ![]() |
[9] |
W. Chen, Y. Li and P. Ma, The fractional Laplacian, World Scientific, Hackensack, NJ, 2020.
doi: 10.1142/10550.![]() ![]() |
[10] |
Y. M. Chen, M. C. Hong and N. Hungerbuhler, Heat flow of p-harmonic maps with values into spheres, Math. Z., 215 (1994), 25-35.
doi: 10.1007/BF02571698.![]() ![]() ![]() |
[11] |
R. L. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016), 1671-1726.
doi: 10.1002/cpa.21591.![]() ![]() ![]() |
[12] |
R. M. Hervé and M. Hervé, Quelques proprietes des solutions de l'equation de Ginzburg-Landau sur un ouvert de $\mathbb{R}^2$, Potential Anal., 5 (1996), 591-609.
doi: 10.1007/BF00275796.![]() ![]() |
[13] |
Y. Lei, On the regularity of positive solutions of a class of Choquard type equations, Math. Z., 273 (2013), 883-905.
doi: 10.1007/s00209-012-1036-6.![]() ![]() |
[14] |
Y. Lei and X. Xu, A Liouville theorem for an integral equation of the Ginzburg-Landau type, Houston J. Math., 49 (2023), 231-245.
![]() |
[15] |
Y. Li, Q. Chen and Y. Lei, A Liouville theorem of the fractional Ginzburg-Landau equation, C. R. Math. Acad. Sci. Paris, 358 (2020), 727-731.
doi: 10.5802/crmath.91.![]() ![]() |
[16] |
F.-H. Lin, Static and moving vortices in Ginzburg-Landau theories, Nonlinear Partial Differential Equations in Geometry and Physics (Knoxville, TN, 1995), 71–111, Progr. Nonlinear Differential Equations Appl., 29, Birkhäuser, Basel, 1997.
doi: 10.1007/978-3-0348-8895-0_3.![]() ![]() ![]() |
[17] |
C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type, Adv. Math., 226 (2011), 2676-2699.
doi: 10.1016/j.aim.2010.07.020.![]() ![]() ![]() |
[18] |
L. Ma, Liouville type theorem and uniform bound for the Lichnerowicz equation and the Ginzburg-Landau equation, C. R. Math. Acad. Sci. Paris, 348 (2010), 993-996.
doi: 10.1016/j.crma.2010.07.031.![]() ![]() ![]() |
[19] |
L. Ma, Boundedness of solutions to Ginzburg-Landau fractional Laplacian equation, Inter. J. Math., 27 (2016), 1650048, 6 pp.
doi: 10.1142/S0129167X16500488.![]() ![]() ![]() |
[20] |
V. Millot and Y. Sire, On a fractional Ginzburg-Landau equation and 1/2-harmonic maps into spheres, Arch. Rational Mech. Anal., 215 (2015), 125-210.
doi: 10.1007/s00205-014-0776-3.![]() ![]() ![]() |
[21] |
A. V. Milovanov and J. Juul Rasmussen, Fractional generalization of the Ginzburg-Landau equation: an unconventional approach to critical phenomena in complex media, Phys. Lett. A, 337 (2005), 75-80.
doi: 10.1016/j.physleta.2005.01.047.![]() ![]() |
[22] |
P. Mironescu, Local minimizers for the Ginzburg-Landau equation are radially symmetric, C. R. Acad. Sci. Paris, 323 (1996), 593-598.
![]() ![]() |
[23] |
F. Pacard and T. Rivière, Linear and Nonlinear Aspects of Vortices. The Ginzburg-Landau Model, Progress in Nonlinear Differential Equations and their Applications, 39. Birkhäuser Boston, Inc., Boston, MA, 2000.
doi: 10.1007/978-1-4612-1386-4.![]() ![]() ![]() |
[24] |
A. Sandier, Locally minimizing solutions of $-\Delta u=u(1-|u|^2)$ in ${\mathbb{R}}^2$, Proc. Roy. Soc. Edinburgh Sec. A, 128 (1998), 349-358.
doi: 10.1017/S030821050001283X.![]() ![]() |
[25] |
I. Shafrir, Remarks on solutions of $-\Delta u=u(1-|u|^2)$ in ${\mathbb{R}}^2$, C. R. Acad. Sci. Paris, 318 (1994), 327-331.
![]() ![]() |
[26] |
L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.
doi: 10.1002/cpa.20153.![]() ![]() ![]() |
[27] |
V. E. Tarasov and G. M. Zaslavsky, Fractional Ginzburg-Landau equation for fractal media, Phys. A, 354 (2005), 249-261.
doi: 10.1016/j.physa.2005.02.047.![]() ![]() |
[28] |
Y. Zhao, Regularity and symmetry for solutions to a system of weighted integral equations, J. Math. Anal. Appl., 391 (2012), 209-222.
doi: 10.1016/j.jmaa.2012.02.016.![]() ![]() ![]() |