\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Blow-up profile of normalized solutions for fractional nonlinear Schrödinger equation with negative potentials

  • *Corresponding author: Haijun Luo

    *Corresponding author: Haijun Luo 
Abstract / Introduction Full Text(HTML) Figure(0) / Table(1) Related Papers Cited by
  • We investigate the existence and blow-up profile of normalized solutions to the fractional nonlinear Schrödinger equation

    $ \begin{align} \begin{cases} (-\Delta)^su+V(x)u+\lambda u = |u|^{\frac{4s}{N}}u, \ \text{in}\ \mathbb{R}^N, \\ \int_{\mathbb{R}^N}|u|^2\mathrm{d}x = \alpha, \end{cases} \end{align} $

    with $ N\ge 2, s\in(0, 1), \alpha>0 $, $ \lambda\in\mathbb{R} $, and negative potentials $ V(x) $. Firstly, we prove the existence and nonexistence of normalized solutions for negative potentials $ V\in L^p(\mathbb{R}^N)+L^{q}(\mathbb{R}^N) $ with $ \frac{N}{2s}\le p<q < \infty $ in the mass-critical setting. Secondly, we refine the nonexistence results and analyze the asymptotic behavior of the minimizers $ \{u_{\alpha}\} $ as $ \alpha \nearrow \alpha^* $ for two types of potentials: a bounded potential $ V(x) = -\frac{\eta}{(1+|x|^{2})^s} $, and a singular potential $ V(x) = -\gamma_1|x-a_1|^{-m_1}-\gamma_2|x-a_2|^{-m_2} $. Our study provides precise energy estimates and sharp blow-up rates in the convergence of minimizers $ \{u_{\alpha}\} $.

    Mathematics Subject Classification: Primary: 35R11, 35B40; Secondary: 35B44.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Existence and nonexistence of global minimizers

    $ L^p(\mathbb{R}^N)+L^q(\mathbb{R}^N) $ $ -\frac{\eta}{(1+|x|^2)^s} $ $ -\gamma_1|x-a_1|^{-m_1}-\gamma_2|x-a_2|^{-m_2} $
    $ \alpha_* $ $ \alpha_* $ is unknown $ \alpha_*>0 $ for $ \eta $ small; $ \alpha_*=0 $ for $ \eta $ large $ \alpha_*=0 $
    $ (0,\alpha_*] $ $ E(\alpha) $ is unknown $ E(\alpha)= 0 $; no global minimizer $ \emptyset $
    $ (\alpha_*,\alpha^*) $ $ E(\alpha)<0 $; global minimizer exists
    $ \alpha^* $ no global minimizer
    $ E(\alpha^*)=\frac{\text{ess inf} V}{2}\alpha^* $ $ E(\alpha^*)=-\frac{\eta}{2}\alpha^* $ $ E(\alpha^*)=-\infty $
    $ (\alpha^*,+\infty) $ $ E(\alpha)=-\infty $; no global minimizer
     | Show Table
    DownLoad: CSV
  • [1] D. Applebaum, Lévy Processes and Stochastic Calculus, 2$^{nd}$ edition, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009. doi: 10.1017/CBO9780511809781.
    [2] T. Bartsch, H. Li and W. Zou, Existence and asymptotic behavior of normalized ground states for Sobolev critical Schrödinger systems, Calc. Var. Partial Differential Equations, 62 (2023), Paper No. 9, 34 pp. doi: 10.1007/s00526-022-02355-9.
    [3] T. BartschR. MolleM. Rizzi and G. Verzini, Normalized solutions of mass supercritical Schrödinger equations with potential, Comm. Partial Differential Equations, 46 (2021), 1729-1756.  doi: 10.1080/03605302.2021.1893747.
    [4] T. Bartsch, S. Qi and W. Zou, Normalized solutions to Schrödinger equations with potential and inhomogeneous nonlinearities on large smooth domains, Math. Ann., (2024). doi: 10.1007/s00208-024-02857-1.
    [5] T. BartschX. Zhong and W. Zou, Normalized solutions for a coupled Schrödinger system, Math. Ann., 380 (2021), 1713-1740.  doi: 10.1007/s00208-020-02000-w.
    [6] J. BellazziniN. BoussaïdL. Jeanjean and N. Visciglia, Existence and stability of standing waves for supercritical NLS with a partial confinement, Comm. Math. Phys., 353 (2017), 229-251.  doi: 10.1007/s00220-017-2866-1.
    [7] A. Burchard, A Short Course on Rearrangement Inequalities, Lecture Notes, IMDEA Winter School, Madrid, 2019. Available from: https://www.math.utoronto.ca/almut/rearrange.pdf.
    [8] M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential, J. Math. Phys., 53 (2012), 043507, 7 pp. doi: 10.1063/1.3701574.
    [9] Y. ChoH. HajaiejG. Hwang and T. Ozawa, On the orbital stability of fractional Schrödinger equations, Commun. Pure Appl. Anal., 13 (2014), 1267-1282.  doi: 10.3934/cpaa.2014.13.1267.
    [10] E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.
    [11] Y. Ding and X. Zhong, Normalized solution to the Schrödinger equation with potential and general nonlinear term: Mass super-critical case, J. Differential Equations, 334 (2022), 194-215.  doi: 10.1016/j.jde.2022.06.013.
    [12] V. D. Dinh, Existence, non-existence and blow-up behaviour of minimizers for the mass-critical fractional non-linear Schrödinger equations with periodic potentials, Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 3252-3292.  doi: 10.1017/prm.2019.64.
    [13] M. DuL. TianJ. Wang and F. Zhang, Existence of normalized solutions for nonlinear fractional Schrödinger equations with trapping potentials, Proc. Roy. Soc. Edinburgh Sect. A, 149 (2019), 617-653.  doi: 10.1017/prm.2018.41.
    [14] B. Dyda, A fractional order Hardy inequality, Illinois J. Math., 48 (2024), 575-588.  doi: 10.1215/ijm/1258138400.
    [15] R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $\mathbb {R}$, Acta Math., 210 (2013), 261-318.  doi: 10.1007/s11511-013-0095-9.
    [16] R. L. FrankE. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016), 1671-1726.  doi: 10.1002/cpa.21591.
    [17] H. Guo and H.-S. Zhou, A constrained variational problem arising in attractive Bose-Einstein condensate with ellipse-shaped potential, Appl. Math. Lett., 87 (2019), 35-41.  doi: 10.1016/j.aml.2018.07.023.
    [18] Y. Guo and R. Seiringer, On the mass concentration for Bose-Einstein condensates with attractive interactions, Lett. Math. Phys., 104 (2014), 141-156.  doi: 10.1007/s11005-013-0667-9.
    [19] Y. GuoZ.-Q. WangX. Zeng and H.-S. Zhou, Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials, Nonlinearity, 31 (2018), 957-979.  doi: 10.1088/1361-6544/aa99a8.
    [20] Y. GuoX. Zeng and H.-S. Zhou, Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 33 (2016), 809-828.  doi: 10.1016/j.anihpc.2015.01.005.
    [21] Q. He and W. Long, The concentration of solutions to a fractional Schrödinger equation, Z. Angew. Math. Phys., 67 (2016), Art. 9, 19 pp. doi: 10.1007/s00033-015-0607-x.
    [22] N. Ikoma and Y. Miyamoto, Stable standing waves of nonlinear Schrödinger equations with potentials and general nonlinearities, Calc. Var. Partial Differential Equations, 59 (2020), Paper No. 48, 20 pp. doi: 10.1007/s00526-020-1703-0.
    [23] K. KirkpatrickE. Lenzmann and G. Staffilani, On the continuum limit for discrete NLS with long-range lattice interactions, Comm. Math. Phys., 317 (2013), 563-591.  doi: 10.1007/s00220-012-1621-x.
    [24] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.
    [25] S. LiJ. Yan and X. Zhu, Constraint minimizers of perturbed Gross-Pitaevskii energy functionals in $\mathbb{R}^N$, Commun. Pure Appl. Anal., 18 (2019), 65-81.  doi: 10.3934/cpaa.2019005.
    [26] S. Li and X. Zhu, Mass concentration and local uniqueness of ground states for $L^2$-subcritical nonlinear Schrödinger equations, Z. Angew. Math. Phys., 70 (2019), Paper No. 34, 26 pp. doi: 10.1007/s00033-019-1077-3.
    [27] Z. LiQ. Zhang and Z. Zhang, Standing waves of fractional Schrödinger equations with potentials and general nonlinearities, Anal. Theory Appl., 39 (2023), 357-377.  doi: 10.4208/ata.OA-2022-0012.
    [28] M.-Q. Liu and W. Zou, Normalized solutions to fractional Schrödinger equation with potentials, Discrete Contin. Dyn. Syst. Ser. S, 16 (2023), 3194-3211.  doi: 10.3934/dcdss.2023188.
    [29] H. Luo and Z. Zhang, Normalized solutions to the fractional Schrödinger equations with combined nonlinearities, Calc. Var. Partial Differential Equations, 59 (2020), Paper No. 143, 35 pp. doi: 10.1007/s00526-020-01814-5.
    [30] G. Molica BisciV. D. Radulescu and  R. ServadeiVariational Methods for Nonlocal Fractional Problems, Cambridge University Press, Cambridge, 2016.  doi: 10.1017/CBO9781316282397.
    [31] R. MolleG. Riey and G. Verzini, Normalized solutions to mass supercritical Schrödinger equations with negative potential, J. Differential Equations, 333 (2022), 302-331.  doi: 10.1016/j.jde.2022.06.012.
    [32] S. Peng and A. Xia, Normalized solutions of supercritical nonlinear fractional Schrödinger equation with potential, Commun. Pure Appl. Anal., 20 (2021), 3723-3744.  doi: 10.3934/cpaa.2021128.
    [33] T. V. Phan, Blow-up profile of Bose-Einstein condensate with singular potentials, J. Math. Phys., 58 (2017), 072301, 10 pp. doi: 10.1063/1.4995393.
    [34] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, No. 65. American Mathematical Soc., 1986. doi: 10.1090/cbms/065.
    [35] Q. Wang and D. Zhao, Existence and mass concentration of 2D attractive Bose-Einstein condensates with periodic potentials, J. Differential Equations, 262 (2017), 2684-2704.  doi: 10.1016/j.jde.2016.11.004.
    [36] Y. WangX. Y. Zeng and H. S. Zhou, Asymptotic behavior of least energy solutions for a fractional Laplacian eigenvalue problem on $\mathbb{R}^N$, Acta Math. Sin. (Engl. Ser.), 39 (2023), 707-727.  doi: 10.1007/s10114-023-1074-5.
    [37] X. ZhangM. Squassina and J. Zhang, Multiplicity of normalized solutions for the fractional Schrödinger equation with potentials, Mathematics., 12 (2024), 772.  doi: 10.3390/math12050772.
    [38] Z. Zhang, Variational, Topological, and Partial Order Methods with their Applications, Springer, Heidelberg, 2013. doi: 10.1007/978-3-642-30709-6.
    [39] J. Zuo, C. Liu and C. Vetro, Normalized Solutions to the Fractional Schrödinger Equation with Potential, Mediterr. J. Math., 20 (2023), Paper No. 216, 12 pp. doi: 10.1007/s00009-023-02422-1.
  • 加载中

Tables(1)

SHARE

Article Metrics

HTML views(2669) PDF downloads(355) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return