|
[1]
|
D. Applebaum, Lévy Processes and Stochastic Calculus, 2$^{nd}$ edition, Cambridge Studies in
Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009.
doi: 10.1017/CBO9780511809781.
|
|
[2]
|
T. Bartsch, H. Li and W. Zou, Existence and asymptotic behavior of normalized ground states for Sobolev critical Schrödinger systems, Calc. Var. Partial Differential Equations, 62 (2023), Paper No. 9, 34 pp.
doi: 10.1007/s00526-022-02355-9.
|
|
[3]
|
T. Bartsch, R. Molle, M. Rizzi and G. Verzini, Normalized solutions of mass supercritical Schrödinger equations with potential, Comm. Partial Differential Equations, 46 (2021), 1729-1756.
doi: 10.1080/03605302.2021.1893747.
|
|
[4]
|
T. Bartsch, S. Qi and W. Zou, Normalized solutions to Schrödinger equations with potential and inhomogeneous nonlinearities on large smooth domains, Math. Ann., (2024).
doi: 10.1007/s00208-024-02857-1.
|
|
[5]
|
T. Bartsch, X. Zhong and W. Zou, Normalized solutions for a coupled Schrödinger system, Math. Ann., 380 (2021), 1713-1740.
doi: 10.1007/s00208-020-02000-w.
|
|
[6]
|
J. Bellazzini, N. Boussaïd, L. Jeanjean and N. Visciglia, Existence and stability of standing waves for supercritical NLS with a partial confinement, Comm. Math. Phys., 353 (2017), 229-251.
doi: 10.1007/s00220-017-2866-1.
|
|
[7]
|
A. Burchard, A Short Course on Rearrangement Inequalities, Lecture Notes, IMDEA Winter School, Madrid, 2019. Available from: https://www.math.utoronto.ca/almut/rearrange.pdf.
|
|
[8]
|
M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential, J. Math. Phys., 53 (2012), 043507, 7 pp.
doi: 10.1063/1.3701574.
|
|
[9]
|
Y. Cho, H. Hajaiej, G. Hwang and T. Ozawa, On the orbital stability of fractional Schrödinger equations, Commun. Pure Appl. Anal., 13 (2014), 1267-1282.
doi: 10.3934/cpaa.2014.13.1267.
|
|
[10]
|
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004.
|
|
[11]
|
Y. Ding and X. Zhong, Normalized solution to the Schrödinger equation with potential and general nonlinear term: Mass super-critical case, J. Differential Equations, 334 (2022), 194-215.
doi: 10.1016/j.jde.2022.06.013.
|
|
[12]
|
V. D. Dinh, Existence, non-existence and blow-up behaviour of minimizers for the mass-critical fractional non-linear Schrödinger equations with periodic potentials, Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 3252-3292.
doi: 10.1017/prm.2019.64.
|
|
[13]
|
M. Du, L. Tian, J. Wang and F. Zhang, Existence of normalized solutions for nonlinear fractional Schrödinger equations with trapping potentials, Proc. Roy. Soc. Edinburgh Sect. A, 149 (2019), 617-653.
doi: 10.1017/prm.2018.41.
|
|
[14]
|
B. Dyda, A fractional order Hardy inequality, Illinois J. Math., 48 (2024), 575-588.
doi: 10.1215/ijm/1258138400.
|
|
[15]
|
R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $\mathbb {R}$, Acta Math., 210 (2013), 261-318.
doi: 10.1007/s11511-013-0095-9.
|
|
[16]
|
R. L. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016), 1671-1726.
doi: 10.1002/cpa.21591.
|
|
[17]
|
H. Guo and H.-S. Zhou, A constrained variational problem arising in attractive Bose-Einstein condensate with ellipse-shaped potential, Appl. Math. Lett., 87 (2019), 35-41.
doi: 10.1016/j.aml.2018.07.023.
|
|
[18]
|
Y. Guo and R. Seiringer, On the mass concentration for Bose-Einstein condensates with attractive interactions, Lett. Math. Phys., 104 (2014), 141-156.
doi: 10.1007/s11005-013-0667-9.
|
|
[19]
|
Y. Guo, Z.-Q. Wang, X. Zeng and H.-S. Zhou, Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials, Nonlinearity, 31 (2018), 957-979.
doi: 10.1088/1361-6544/aa99a8.
|
|
[20]
|
Y. Guo, X. Zeng and H.-S. Zhou, Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 33 (2016), 809-828.
doi: 10.1016/j.anihpc.2015.01.005.
|
|
[21]
|
Q. He and W. Long, The concentration of solutions to a fractional Schrödinger equation, Z. Angew. Math. Phys., 67 (2016), Art. 9, 19 pp.
doi: 10.1007/s00033-015-0607-x.
|
|
[22]
|
N. Ikoma and Y. Miyamoto, Stable standing waves of nonlinear Schrödinger equations with potentials and general nonlinearities, Calc. Var. Partial Differential Equations, 59 (2020), Paper No. 48, 20 pp.
doi: 10.1007/s00526-020-1703-0.
|
|
[23]
|
K. Kirkpatrick, E. Lenzmann and G. Staffilani, On the continuum limit for discrete NLS with long-range lattice interactions, Comm. Math. Phys., 317 (2013), 563-591.
doi: 10.1007/s00220-012-1621-x.
|
|
[24]
|
N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.
doi: 10.1016/S0375-9601(00)00201-2.
|
|
[25]
|
S. Li, J. Yan and X. Zhu, Constraint minimizers of perturbed Gross-Pitaevskii energy functionals in $\mathbb{R}^N$, Commun. Pure Appl. Anal., 18 (2019), 65-81.
doi: 10.3934/cpaa.2019005.
|
|
[26]
|
S. Li and X. Zhu, Mass concentration and local uniqueness of ground states for $L^2$-subcritical nonlinear Schrödinger equations, Z. Angew. Math. Phys., 70 (2019), Paper No. 34, 26 pp.
doi: 10.1007/s00033-019-1077-3.
|
|
[27]
|
Z. Li, Q. Zhang and Z. Zhang, Standing waves of fractional Schrödinger equations with potentials and general nonlinearities, Anal. Theory Appl., 39 (2023), 357-377.
doi: 10.4208/ata.OA-2022-0012.
|
|
[28]
|
M.-Q. Liu and W. Zou, Normalized solutions to fractional Schrödinger equation with potentials, Discrete Contin. Dyn. Syst. Ser. S, 16 (2023), 3194-3211.
doi: 10.3934/dcdss.2023188.
|
|
[29]
|
H. Luo and Z. Zhang, Normalized solutions to the fractional Schrödinger equations with combined nonlinearities, Calc. Var. Partial Differential Equations, 59 (2020), Paper No. 143, 35 pp.
doi: 10.1007/s00526-020-01814-5.
|
|
[30]
|
G. Molica Bisci, V. D. Radulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, Cambridge, 2016.
doi: 10.1017/CBO9781316282397.
|
|
[31]
|
R. Molle, G. Riey and G. Verzini, Normalized solutions to mass supercritical Schrödinger equations with negative potential, J. Differential Equations, 333 (2022), 302-331.
doi: 10.1016/j.jde.2022.06.012.
|
|
[32]
|
S. Peng and A. Xia, Normalized solutions of supercritical nonlinear fractional Schrödinger equation with potential, Commun. Pure Appl. Anal., 20 (2021), 3723-3744.
doi: 10.3934/cpaa.2021128.
|
|
[33]
|
T. V. Phan, Blow-up profile of Bose-Einstein condensate with singular potentials, J. Math. Phys., 58 (2017), 072301, 10 pp.
doi: 10.1063/1.4995393.
|
|
[34]
|
P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, No. 65. American Mathematical Soc., 1986.
doi: 10.1090/cbms/065.
|
|
[35]
|
Q. Wang and D. Zhao, Existence and mass concentration of 2D attractive Bose-Einstein condensates with periodic potentials, J. Differential Equations, 262 (2017), 2684-2704.
doi: 10.1016/j.jde.2016.11.004.
|
|
[36]
|
Y. Wang, X. Y. Zeng and H. S. Zhou, Asymptotic behavior of least energy solutions for a fractional Laplacian eigenvalue problem on $\mathbb{R}^N$, Acta Math. Sin. (Engl. Ser.), 39 (2023), 707-727.
doi: 10.1007/s10114-023-1074-5.
|
|
[37]
|
X. Zhang, M. Squassina and J. Zhang, Multiplicity of normalized solutions for the fractional Schrödinger equation with potentials, Mathematics., 12 (2024), 772.
doi: 10.3390/math12050772.
|
|
[38]
|
Z. Zhang, Variational, Topological, and Partial Order Methods with their Applications, Springer, Heidelberg, 2013.
doi: 10.1007/978-3-642-30709-6.
|
|
[39]
|
J. Zuo, C. Liu and C. Vetro, Normalized Solutions to the Fractional Schrödinger Equation with Potential, Mediterr. J. Math., 20 (2023), Paper No. 216, 12 pp.
doi: 10.1007/s00009-023-02422-1.
|