\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Well-posedness and stationary states for a crowded active Brownian system with size-exclusion

  • *Corresponding author: Simon M. Schulz

    *Corresponding author: Simon M. Schulz
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We prove the existence of solutions to a non-linear, non-local, degenerate equation which was previously derived as the formal hydrodynamic limit of an active Brownian particle system, where the particles are endowed with a position and an orientation. This equation incorporates diffusion in both the spatial and angular coordinates, as well as a non-linear non-local drift term, which depends on the angle-independent density. The spatial diffusion is non-linear degenerate and also comprises diffusion of the angle-independent density, which one may interpret as cross-diffusion with infinitely many species. Our proof relies on interpreting the equation as the perturbation of a gradient flow in a Wasserstein-type space. It generalizes the boundedness-by-entropy method to this setting and makes use of a gain of integrability due to the angular diffusion. For this latter step, we adapt a classical interpolation lemma for function spaces depending on time. We also prove uniqueness in the particular case where the non-local drift term is null, and provide existence and uniqueness results for stationary equilibrium solutions.

    Mathematics Subject Classification: Primary: 35K65, 35K55; Secondary: 76M30, 35Q92.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] L. AlasioJ. Guerand and S. Schulz, Regularity and trend to equilibrium for a non-local advection-diffusion model of active particles, Kinetic and Related Models, 18 (2025), 426-462.  doi: 10.3934/krm.2024022.
    [2] G. Allaire, Analyse Numérique et Optimisation, 2$^{nd}$ edition, Éditions de l'École Polytechnique, 91128 Palaiseau Cedex, 2012.
    [3] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2$^{nd}$ edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.
    [4] C. Bardos and N. Besse, The Cauchy problem for the Vlasov–Dirac–Benney equation and related issues in fluid mechanics and semi-classical limits, Kinetic and Related Models, 6 (2013), 893-917.  doi: 10.3934/krm.2013.6.893.
    [5] M. Briant and N. Meunier, Well-posedness for systems of self-propelled particles, Kinetic and Related Models, 17 (2024), 659-673.  doi: 10.3934/krm.2023036.
    [6] M. BrunaM. BurgerA. Esposito and S. M. Schulz, Phase separation in systems of interacting active Brownian particles, SIAM J. Appl. Math., 82 (2022), 1635-1660.  doi: 10.1137/21M1452524.
    [7] M. BrunaM. BurgerA. Esposito and S. Schulz, Well-posedness of an integro-differential model for active Brownian particles, SIAM J. Math. Anal., 54 (2022), 5662-5697.  doi: 10.1137/21M1462039.
    [8] M. BurgerM. Di FrancescoJ.-F. Pietschmann and B. Schlake, Nonlinear cross-diffusion with size exclusion, SIAM J. Math. Anal., 42 (2010), 2842-2871.  doi: 10.1137/100783674.
    [9] J. A. CarrilloR. J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: Entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana, 19 (2003), 971-1018.  doi: 10.4171/rmi/376.
    [10] M. E. Cates and J. Tailleur, When are active Brownian particles and run-and-tumble particles equivalent? Consequences for motility-induced phase separation, EPL, 101 (2013), 20010.  doi: 10.1209/0295-5075/101/20010.
    [11] M. E. Cates and J. Tailleur, Motility-induced phase separation, Annu. Rev. Cond. Ma. P., 6 (2015), 219-244.  doi: 10.1146/annurev-conmatphys-031214-014710.
    [12] E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer Science & Business Media, Springer-Verlag, New York, 1993.
    [13] C. Erignoux, Hydrodynamic limit for an active exclusion process, Mémoires de la S.M.F., 169 (2021), 1-206.  doi: 10.24033/msmf.477.
    [14] L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010.
    [15] H. Gajewski, On a variant of monotonicity and its applications to differential equations, Nonlinear Analysis, 22 (1994), 73-80.  doi: 10.1016/0362-546X(94)90006-X.
    [16] P.-E. Jabin and A. Nouri, Analytic solutions to a strongly nonlinear Vlasov equation, C. R. Acad. Sci. Paris, Ser. I, 349 (2011), 541-546.  doi: 10.1016/j.crma.2011.03.024.
    [17] A. Jüngel, The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, 28 (2015), 1963-2001.  doi: 10.1088/0951-7715/28/6/1963.
    [18] A. Jüngel, Entropy Methods for Diffusive Partial Differential Equations, Springer Briefs in Mathematics, 804, Springer, 2016.
    [19] O. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968.
    [20] F. Pacard and A. Unterreiter, A variational analysis of the thermal equilibrium state of charged quantum fluids, Commun. Part. Diff. Eqs., 20 (1995), 885-900.  doi: 10.1080/03605309508821118.
    [21] B. Perthame, Mathematical tools for kinetic equations, Bulletin of the American Math. Soc., 41 (2004), 205-244.  doi: 10.1090/S0273-0979-04-01004-3.
    [22] G. S. RednerM. F. Hagan and A. Baskaran, Structure and dynamics of a phase-separating active colloidal fluid, Phys. Rev. Lett., 110 (2013), 055701.  doi: 10.1103/PhysRevLett.110.055701.
    [23] P. RomanczukM. BärW. EbelingB. Lindner and L. Schimansky-Geier, Active Brownian particles, Eur. Phys. J. Special Topics, 202 (2012), 1-162.  doi: 10.1140/epjst/e2012-01529-y.
    [24] T. SpeckA. M. MenzelJ. Bialké and H. Löwen, Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles, J. Chem. Phys., 142 (2015), 224109.  doi: 10.1063/1.4922324.
    [25] J. StenhammarR. WittkowskiD. Marenduzzo and M. E. Cates, Activity-induced phase separation and self-assembly in mixtures of active and passive particles, Phys. Rev. Lett., 114 (2015), 018301.  doi: 10.1103/PhysRevLett.114.018301.
    [26] J. Yeomans, The hydrodynamics of active systems, Rivista del Nuovo Cimento, 40 (2017), 1-31. 
    [27] N. Zamponi and A. Jüngel, Analysis of degenerate cross-diffusion population models with volume filling, Annales de l’Institut Henri Poincaré C, Analyse Non-Linéaire, 34 (2017), 1-29. doi: 10.1016/j.anihpc.2015.08.003.
  • 加载中
SHARE

Article Metrics

HTML views(1226) PDF downloads(202) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return