Early Access articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Early Access publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Early Access articles via the “Early Access” tab for the selected journal.
We prove the existence of solutions to a non-linear, non-local, degenerate equation which was previously derived as the formal hydrodynamic limit of an active Brownian particle system, where the particles are endowed with a position and an orientation. This equation incorporates diffusion in both the spatial and angular coordinates, as well as a non-linear non-local drift term, which depends on the angle-independent density. The spatial diffusion is non-linear degenerate and also comprises diffusion of the angle-independent density, which one may interpret as cross-diffusion with infinitely many species. Our proof relies on interpreting the equation as the perturbation of a gradient flow in a Wasserstein-type space. It generalizes the boundedness-by-entropy method to this setting and makes use of a gain of integrability due to the angular diffusion. For this latter step, we adapt a classical interpolation lemma for function spaces depending on time. We also prove uniqueness in the particular case where the non-local drift term is null, and provide existence and uniqueness results for stationary equilibrium solutions.
Citation: |
[1] |
L. Alasio, J. Guerand and S. Schulz, Regularity and trend to equilibrium for a non-local advection-diffusion model of active particles, Kinetic and Related Models, 18 (2025), 426-462.
doi: 10.3934/krm.2024022.![]() ![]() |
[2] |
G. Allaire, Analyse Numérique et Optimisation, 2$^{nd}$ edition, Éditions de l'École Polytechnique, 91128 Palaiseau Cedex, 2012.
![]() |
[3] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2$^{nd}$ edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.
![]() ![]() |
[4] |
C. Bardos and N. Besse, The Cauchy problem for the Vlasov–Dirac–Benney equation and related issues in fluid mechanics and semi-classical limits, Kinetic and Related Models, 6 (2013), 893-917.
doi: 10.3934/krm.2013.6.893.![]() ![]() ![]() |
[5] |
M. Briant and N. Meunier, Well-posedness for systems of self-propelled particles, Kinetic and Related Models, 17 (2024), 659-673.
doi: 10.3934/krm.2023036.![]() ![]() ![]() |
[6] |
M. Bruna, M. Burger, A. Esposito and S. M. Schulz, Phase separation in systems of interacting active Brownian particles, SIAM J. Appl. Math., 82 (2022), 1635-1660.
doi: 10.1137/21M1452524.![]() ![]() ![]() |
[7] |
M. Bruna, M. Burger, A. Esposito and S. Schulz, Well-posedness of an integro-differential model for active Brownian particles, SIAM J. Math. Anal., 54 (2022), 5662-5697.
doi: 10.1137/21M1462039.![]() ![]() ![]() |
[8] |
M. Burger, M. Di Francesco, J.-F. Pietschmann and B. Schlake, Nonlinear cross-diffusion with size exclusion, SIAM J. Math. Anal., 42 (2010), 2842-2871.
doi: 10.1137/100783674.![]() ![]() ![]() |
[9] |
J. A. Carrillo, R. J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: Entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana, 19 (2003), 971-1018.
doi: 10.4171/rmi/376.![]() ![]() ![]() |
[10] |
M. E. Cates and J. Tailleur, When are active Brownian particles and run-and-tumble particles equivalent? Consequences for motility-induced phase separation, EPL, 101 (2013), 20010.
doi: 10.1209/0295-5075/101/20010.![]() ![]() |
[11] |
M. E. Cates and J. Tailleur, Motility-induced phase separation, Annu. Rev. Cond. Ma. P., 6 (2015), 219-244.
doi: 10.1146/annurev-conmatphys-031214-014710.![]() ![]() |
[12] |
E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer Science & Business Media, Springer-Verlag, New York, 1993.
![]() ![]() |
[13] |
C. Erignoux, Hydrodynamic limit for an active exclusion process, Mémoires de la S.M.F., 169 (2021), 1-206.
doi: 10.24033/msmf.477.![]() ![]() ![]() |
[14] |
L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010.
![]() ![]() |
[15] |
H. Gajewski, On a variant of monotonicity and its applications to differential equations, Nonlinear Analysis, 22 (1994), 73-80.
doi: 10.1016/0362-546X(94)90006-X.![]() ![]() ![]() |
[16] |
P.-E. Jabin and A. Nouri, Analytic solutions to a strongly nonlinear Vlasov equation, C. R. Acad. Sci. Paris, Ser. I, 349 (2011), 541-546.
doi: 10.1016/j.crma.2011.03.024.![]() ![]() ![]() |
[17] |
A. Jüngel, The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, 28 (2015), 1963-2001.
doi: 10.1088/0951-7715/28/6/1963.![]() ![]() ![]() |
[18] |
A. Jüngel, Entropy Methods for Diffusive Partial Differential Equations, Springer Briefs in Mathematics, 804, Springer, 2016.
![]() ![]() |
[19] |
O. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968.
![]() ![]() |
[20] |
F. Pacard and A. Unterreiter, A variational analysis of the thermal equilibrium state of charged quantum fluids, Commun. Part. Diff. Eqs., 20 (1995), 885-900.
doi: 10.1080/03605309508821118.![]() ![]() ![]() |
[21] |
B. Perthame, Mathematical tools for kinetic equations, Bulletin of the American Math. Soc., 41 (2004), 205-244.
doi: 10.1090/S0273-0979-04-01004-3.![]() ![]() ![]() |
[22] |
G. S. Redner, M. F. Hagan and A. Baskaran, Structure and dynamics of a phase-separating active colloidal fluid, Phys. Rev. Lett., 110 (2013), 055701.
doi: 10.1103/PhysRevLett.110.055701.![]() ![]() |
[23] |
P. Romanczuk, M. Bär, W. Ebeling, B. Lindner and L. Schimansky-Geier, Active Brownian particles, Eur. Phys. J. Special Topics, 202 (2012), 1-162.
doi: 10.1140/epjst/e2012-01529-y.![]() ![]() |
[24] |
T. Speck, A. M. Menzel, J. Bialké and H. Löwen, Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles, J. Chem. Phys., 142 (2015), 224109.
doi: 10.1063/1.4922324.![]() ![]() |
[25] |
J. Stenhammar, R. Wittkowski, D. Marenduzzo and M. E. Cates, Activity-induced phase separation and self-assembly in mixtures of active and passive particles, Phys. Rev. Lett., 114 (2015), 018301.
doi: 10.1103/PhysRevLett.114.018301.![]() ![]() |
[26] |
J. Yeomans, The hydrodynamics of active systems, Rivista del Nuovo Cimento, 40 (2017), 1-31.
![]() |
[27] |
N. Zamponi and A. Jüngel, Analysis of degenerate cross-diffusion population models with volume filling, Annales de l’Institut Henri Poincaré C, Analyse Non-Linéaire, 34 (2017), 1-29.
doi: 10.1016/j.anihpc.2015.08.003.![]() ![]() ![]() |