We present a simple model in dimension $ d\geq 2 $ for slowing particles in random media, where point particles move in straight lines among and inside spherical identical obstacles with Poisson distributed centres. When crossing an obstacle, a particle is slowed down according to the law $ \dot{V} = -\frac{ {\kappa}}{\epsilon} S(|V|) V $, where $ V $ is the velocity of the point particle, $ {\kappa} $ is a positive constant, $ \epsilon $ is the radius of the obstacle and $ S(|V|) $ is a given slowing profile. With this choice, the slowing rate in the obstacles is such that the variation of speed at each crossing is of order $ 1 $. We study the asymptotic limit of the particle system when $ \epsilon $ vanishes and the mean free path of the point particles stays finite. We prove the convergence of the point particles density measure to the solution of a kinetic-like equation with a collision term which includes a contribution proportional to a $ {\delta} $ function in $ v = 0 $; this contribution guarantees the conservation of mass for the limit equation.
| Citation: |
| [1] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2$^{nd}$ edition, Birkhäuser Verlag AG, Basel, Boston, Berlin, 2008.
|
| [2] |
S. Atzeni and J. Meyer Ter-Vehn, The Physics of Inertial Fusion, Clarendon Press-Oxford, 2004.
doi: 10.1093/acprof:oso/9780198562641.001.0001.
|
| [3] |
H. Azechi, M. D. Cable and R. O. Stapf, Review of secondary and tertiary reactions, and neutron scattering as diagnostic techniques for inertial confinement fusion targets, Laser and Particle Beams, 9 (1993), 119-134.
doi: 10.1017/S0263034600002378.
|
| [4] |
M. D. Cable and S. P. Hatchett, Neutron spectra from inertial confinement fusion targets for measurement of fuel areal density and charged particle stopping powers, J. Appl. Phys., 62 (1987), 2233-2236.
doi: 10.1063/1.339850.
|
| [5] |
J.-F. Clouet, F. Golse, M. Puel and R. Sentis, On the slowing down of charged particles in a binary stochastic mixture, Kinetic and Related Models, 1 (2008), 387-404.
doi: 10.3934/krm.2008.1.387.
|
| [6] |
L. Desvillettes and V. Ricci, A rigorous derivation of a linear kinetic equation of Fokker–Planck type in the limit of grazing collisions, Journal of Statistical Physics, 104 (2001), 1173-1189.
doi: 10.1023/A:1010461929872.
|
| [7] |
J. Dieudonné, Treatise on Analysis, Vol. 2, Academic Press, Inc., 1976.
|
| [8] |
J. J. Duderstadt and G. A. Moses, Inertial Confinement Fusion, J. Wiley and Sons, Inc., 1982.
|
| [9] |
G. Gallavotti, Rigorous Theory of the Boltzmann Equation in the Lorentz Gas, Nota Interna No. 358, Istituto di Fisica, Università di Roma (1972), reprint in Statistical Mechanics, 1999. Available from: https://ipparco.roma1.infn.it/pagine/deposito/1967-1979/041-Bz.pdf
|
| [10] |
C. D. Levermore, G. C. Pomraning, D. L. Sanzo and J. Wong, Linear transport theory in a random medium, J. Math. Phys., 27 (1986), 2526-2536.
doi: 10.1063/1.527320.
|
| [11] |
C. D Levermore and G. B. Zimmermann, Modeling charged particle loss in a fuel/shell mixture, J. Math. Phys., 34 (1993), 4725-4729.
doi: 10.1063/1.530367.
|
| [12] |
P. Malliavin, Integration and Probability, Springer-Verlag New York, Inc., 1983.
|
| [13] |
A. Pazy, Semigroups of Operators and Applications to Partial Differential Equations, Springer-Verlag New York, Inc., 1983.
doi: 10.1007/978-1-4612-5561-1.
|
| [14] |
V. Ricci, Non Markovian behavior of the Boltzmann-Grad limit of linear stochastic particle systems, Communications in Mathematical Sciences, Suppl., 1 (2007), 95-105.
doi: 10.4310/CMS.2007.v5.n5.a8.
|
| [15] |
R. D. Richtmyer, Taylor instability in shock acceleration of compressible fluids, Comm. on Pure and Appl. Math., 13 (1960), 297-319.
doi: 10.1002/cpa.3160130207.
|
| [16] |
L. Schwartz, Théorie Des Distributions, Hermann Paris, 1966.
|
Representation of a trajectory of the direct flow when