We establish a general Hardy-type inequality and apply it to investigate the nonexistence of positive solutions to the nonlinear elliptic problem
$ -\Delta u\ge \lambda \rho(x) u^p +\mu(x)\frac{|\nabla u|^s}{u^{\theta}}\quad \text{in}\ \Omega , $
in bounded domains in $ \mathbb{R}^N $, $ N \geq 2 $, and unbounded exterior domains in $ \mathbb{R}^N $, $ N \geq 3 $. We also discuss the corresponding results for the related systems of partial differential equations.
| Citation: |
| [1] |
A. Aghajani and C. Cowan, Explicit estimates on positive supersolutions of nonlinear elliptic equations and applications, Discrete Contin. Dyn. Syst., 39 (2019), 2731-2742.
doi: 10.3934/dcds.2019114.
|
| [2] |
S. Alarcón, J. García-Melián and A. Quass, Nonexistence of positive supersolutions to some nonlinear elliptic problems, J. Math. Pures Appl., 99 (2013), 618-634.
doi: 10.1016/j.matpur.2012.10.001.
|
| [3] |
D. Arcoya, J. Carmona, T. Leonori, P. J. Martínez-Aparicio, L. Orsina and F. Petitta, Existence and nonexistence of solutions for singular quadratic quasilinear equations, J. Differential Equations, 246 (2009), 4006-4042.
doi: 10.1016/j.jde.2009.01.016.
|
| [4] |
D. Arcoya and L. Moreno-Mérida, The effect of a singular term in a quadratic quasi-linear problem, J. Fixed Point Theory Appl., 19 (2017), 815-831.
doi: 10.1007/s11784-016-0374-0.
|
| [5] |
S. N. Armstrong and B. Sirakov, Nonexistence of positive supersolutions of elliptic equations via the maximum principle, Comm. Partial Differential Equations, 36 (2011), 2011-2047.
doi: 10.1080/03605302.2010.534523.
|
| [6] |
A. Bensoussan, L. Boccardo and F. Murat, On a nonlinear partial differential equation having natural growth terms and unbounded solutions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 347-364.
doi: 10.1016/s0294-1449(16)30342-0.
|
| [7] |
M. F. Bidaut-Véron, M. Garcia-Huidobro and L. Véron, A priori estimates for elliptic equations with reaction terms involving the function and its gradient, Math. Ann., 378 (2020), 13-56.
doi: 10.1007/s00208-019-01872-x.
|
| [8] |
M. F. Bidaut-Véron, M. Garcia-Huidobro and L. Véron, Radial solutions of scaling invariant nonlinear elliptic equations with mixed reaction terms, Discrete Contin. Dyn. Syst., 40 (2020), 933-982.
doi: 10.3934/dcds.2020067.
|
| [9] |
I. Birindelli and E. Mitidieri, Liouville theorems for elliptic inequalities and applications, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 1217-1247.
doi: 10.1017/S0308210500027293.
|
| [10] |
I. Birindelli and F. Demengel, Comparison principle and Liouville type results for singular fully nonlinear operators, Ann. Fac. Sci. Toulouse, 13 (2004), 261-287.
doi: 10.5802/afst.1070.
|
| [11] |
L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms, ESAIM Control Optim. Calc. Var., 14 (2008), 411-426.
doi: 10.1051/cocv:2008031.
|
| [12] |
L. A. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math., 53 (1984), 259-275.
|
| [13] |
J. Carmona, S. López-Martínez and P. J. Martínez-Aparicio, A priori estimates for non-coercive Dirichlet problems with subquadratic gradient terms, J. Differential Equations, 366 (2023), 292-319.
doi: 10.1016/j.jde.2023.04.012.
|
| [14] |
C. Cowan, Optimal Hardy inequalities for general elliptic operators with improvements, Commun. Pure Appl. Anal., 9 (2010), 109-140.
doi: 10.3934/cpaa.2010.9.109.
|
| [15] |
P. D'Ancona and R. Lucá, Stein–Weiss and Caffarelli–Kohn–Nirenberg inequalities with angular integrability, J. Math. Anal. Appl., 388 (2012), 1061-1079.
doi: 10.1016/j.jmaa.2011.10.051.
|
| [16] |
C. De Coster and A. J. Fernández, Existence and multiplicity for an elliptic problem with critical growth in the gradient and sign-changing coefficients, Calc. Var. Partial Differential Equations, 59 (2020), Paper No. 97, 34 pp.
doi: 10.1007/s00526-020-01755-z.
|
| [17] |
R. Filippucci, P. Pucci and P. Souplet, A Liouville-type theorem for an elliptic equation with superquadratic growth in the gradient, Adv. Nonlinear Stud., 20 (2020), 245-251.
doi: 10.1515/ans-2019-2070.
|
| [18] |
R. Filippucci, Nonexistence of nonnegative solutions of elliptic systems of divergence type, J. Differential Equations, 250 (2011), 572-595.
doi: 10.1016/j.jde.2010.09.028.
|
| [19] |
G. Di Fratta and A. Fiorenza, A unified divergent approach to Hardy-Poincaré inequalities in classical and variable Sobolev spaces, J. Funct. Anal., 283 (2022), Paper No. 109552, 21 pp.
doi: 10.1016/j.jfa.2022.109552.
|
| [20] |
N. Ghoussoub and A. Moradifam, Functional Inequalities: New Perspectives and New Applications, Math. Surveys Monogr., 187, American Mathematical Society, 2013.
|
| [21] |
D. Giachetti and F. Murat, An elliptic problem with a lower order term having singular behaviour, Boll. Unione Mat. Ital., 2 (2009), 349-370.
|
| [22] |
S. Kajántó, A. Kristály, I. R. Peter and W. Zhao, A generic functional inequality and Riccati pairs: An alternative approach to Hardy-type inequalities, Math. Ann., 390 (2024), 3621-3663.
doi: 10.1007/s00208-024-02827-7.
|
| [23] |
S. López-Martínez, A singularity as a break point for the multiplicity of solutions to quasilinear elliptic problems, Adv. Nonlinear Anal., 9 (2020), 1351-1382.
doi: 10.1515/anona-2020-0056.
|
| [24] |
E. Mitidieri, A simple approach to Hardy inequalities, Math. Notes, 67 (2000), 479-486.
doi: 10.1007/BF02676404.
|
| [25] |
E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in ${{\mathbb{R}}}^N$, Differential Integral Equations, 9 (1996), 465-479.
doi: 10.57262/die/1367969966.
|
| [26] |
E. Mitidieri and S. I. Pohozaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Tr. Mat. Inst. Steklova, 234 (2001), 1-384.
|
| [27] |
M. Ruzhansky and D. Suragan, Hardy Inequalities on Homogeneous Groups, Progr. Math., 327. Birkhäuser/Springer, 2019.
|
| [28] |
J. Serrin, Local behavior of solutions of quasi-linear equations, Acta Math., 111 (1964), 247-302.
doi: 10.1007/BF02391014.
|
| [29] |
C. Yacoub, Caffarelli–Kohn–Nirenberg inequalities on Lie groups of polynomial growth, Math. Nachr., 291 (2018), 204-214.
doi: 10.1002/mana.201700063.
|