We prove an effective slope gap distribution result for translation surfaces whose Veech group is a lattice. As a corollary, we obtain a dynamical proof for an effective gap distribution result for the Farey fractions. As an intermediate step, we prove an effective equidistribution result for the intersection points of long horocycles with a particular transversal of the horocycle flow in $ {\rm SL}_2 (\mathbb{R})/\Gamma $ where $ \Gamma $ is a lattice.
| Citation: |
| [1] |
J. S. Athreya and J. Chaika, The distribution of gaps for saddle connection directions, Geom. Funct. Anal., 22 (2012), 1491-1516.
doi: 10.1007/s00039-012-0164-9.
|
| [2] |
J. S. Athreya, J. Chaika and S. Lelièvre, The gap distribution of slopes on the golden L, In Recent Trends in Ergodic Theory and Dynamical Systems, volume 631 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2015, 47-62.
doi: 10.1090/conm/631/12595.
|
| [3] |
J. S. Athreya and Y. Cheung, A Poincaré section for the horocycle flow on the space of lattices, Int. Math. Res. Not. IMRN, 2014 (2014), 2643-2690.
doi: 10.1093/imrn/rnt003.
|
| [4] |
J. S. Athreya, Y. Cheung and H. Masur, Siegel-Veech transforms are in $L^2$, J. Mod. Dyn., 14 (2019), 1-19. With an appendix by Athreya and Rene Rühr.
doi: 10.3934/jmd.2019001.
|
| [5] |
J. S. Athreya, C. Cobeli and A. Zaharescu, Radial density in Apollonian packings, Int. Math. Res. Not. IMRN, 2015 (2015), 9991-10011.
doi: 10.1093/imrn/rnu257.
|
| [6] |
V. Augustin, F. P. Boca, C. Cobeli and A. Zaharescu, The $h$-spacing distribution between Farey points, Math. Proc. Cambridge Philos. Soc., 131 (2001), 23-38.
doi: 10.1017/S0305004101005187.
|
| [7] |
J. Berman, T. McAdam, A. Miller-Murthy, C. Uyanik and H. Wan, Slope gap distribution of saddle connections on the $2n$-gon, Discrete Contin. Dyn. Syst., 43 (2023), 1-56.
doi: 10.3934/dcds.2022141.
|
| [8] |
F. P. Boca, C. Cobeli and A. Zaharescu, Distribution of lattice points visible from the origin, Comm. Math. Phys., 213 (2000), 433-470.
doi: 10.1007/s002200000250.
|
| [9] |
F. P. Boca, C. Cobeli and A. Zaharescu, A conjecture of R. R. Hall on Farey points, J. Reine Angew. Math., 535 (2001), 207-236.
doi: 10.1515/crll.2001.049.
|
| [10] |
F. P. Boca, B. Heersink and P. Spiegelhalter, Gap distribution of Farey fractions under some divisibility constraints, Integers, 13 (2013), Paper No. A44, 15 pp.
|
| [11] |
F. P. Boca and A. Zaharescu, The correlations of Farey fractions, J. London Math. Soc., 72 (2005), 25-39.
doi: 10.1112/S0024610705006629.
|
| [12] |
T. Browning and I. Vinogradov, Effective Ratner theorem for $\text{SL}(2, \mathbb{R})\ltimes\mathbb{R}^2$ and gaps in $\sqrt{n}$ modulo 1, J. Lond. Math. Soc., 94 (2016), 61-84.
doi: 10.1112/jlms/jdw025.
|
| [13] |
C. Burrin, A. Nevo, R. Rühr and B. Weiss, Effective counting for discrete lattice orbits in the plane via Eisenstein series, Enseign. Math., 66 (2020), 259-304.
doi: 10.4171/lem/66-3/4-1.
|
| [14] |
S. C. Edwards., On the rate of equidistribution of expanding translates of horospheres in $\Gamma\backslash G$, Comment. Math. Helv., 96 (2021), 275-337.
doi: 10.4171/cmh/513.
|
| [15] |
A. Gorodnik and A. Nevo, The Ergodic Theory of Lattice Subgroups, Princeton University Press, Princeton, 2010.
|
| [16] |
R. R. Hall, A note on Farey series, J. London Math. Soc., 2 (1970), 139-148.
doi: 10.1112/jlms/s2-2.1.139.
|
| [17] |
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, Oxford, sixth edition, 2008.
|
| [18] |
B. Heersink, Poincaré sections for the horocycle flow in covers of ${\rm SL}(2, \mathbb{R})/{\rm SL}(2, \mathbb{Z})$ and applications to Farey fraction statistics, Monatsh. Math., 179 (2016), 389-420.
doi: 10.1007/s00605-015-0873-x.
|
| [19] |
R. Howe and E.-C. Tan, Non-Abelian Harmonic Analysis. Applications of $\; {{SL(2, {\mathbb{R}})}}$, Universitext. New York etc.: Springer-Verlag, 1992.
doi: 10.1007/978-1-4613-9200-2.
|
| [20] |
P. Hubert and T. A. Schmidt, An introduction to Veech surfaces, In Handbook of Dynamical Systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006,501-526.
doi: 10.1016/S1874-575X(06)80031-7.
|
| [21] |
D. Y. Kleinbock and G. A. Margulis, On effective equidistribution of expanding translates of certain orbits in the space of lattices, In Number Theory, Analysis and Geometry, Springer, New York, 2012,385-396.
doi: 10.1007/978-1-4614-1260-1_18.
|
| [22] |
L. Kumanduri, A. Sanchez and J. Wang, Slope gap distributions of Veech surfaces, Algebraic and Geometric Topology, 24 (2024), 951-980.
doi: 10.2140/agt.2024.24.951.
|
| [23] |
H. Li, Effective limit distribution of the Frobenius numbers, Compos. Math., 151 (2015), 898-916.
doi: 10.1112/S0010437X14007866.
|
| [24] |
E. Lindenstrauss, A. Mohammadi and Z. Wang, Effective equidistribution for some one parameter unipotent flows, 2022., Available from https://arXiv.org/abs/2211.11099.
|
| [25] |
E. Lindenstrauss, A. Mohammadi and Z. Wang, Quantitative equidistribution and the local statistics of the spectrum of a flat torus, J. Anal. Math., 151 (2023), 181-234.
doi: 10.1007/s11854-023-0332-x.
|
| [26] |
G. A. Margulis, On Some Aspects of the Theory of Anosov Systems. With a Survey by Richard Sharp: Periodic Orbits of Hyperbolic Flows, Transl. from the Russian by S. V. Vladimirovna, Springer Monogr. Math. Berlin: Springer, 2004.
doi: 10.1007/978-3-662-09070-1.
|
| [27] |
J. Marklof, The asymptotic distribution of Frobenius numbers, Invent. Math., 181 (2010), 179-207.
doi: 10.1007/s00222-010-0245-z.
|
| [28] |
H. Masur, Lower bounds for the number of saddle connections and closed trajectories of a quadratic differential, In Holomorphic Functions and Moduli, Vol. Ⅰ (Berkeley, CA, 1986), volume 10 of Math. Sci. Res. Inst. Publ., Springer, New York, 1988,215-228.
doi: 10.1007/978-1-4613-9602-4_20.
|
| [29] |
H. Masur, The growth rate of trajectories of a quadratic differential, Ergodic Theory Dynam. Systems, 10 (1990), 151-176.
doi: 10.1017/S0143385700005459.
|
| [30] |
C. Matheus and G. Weitze-Schmithüsen, Explicit Teichmüller curves with complementary series, Bull. Soc. Math. France, 141 (2013), 557-602.
doi: 10.24033/bsmf.2656.
|
| [31] |
A. Nevo, R. Rühr and B. Weiss, Effective counting on translation surfaces, Advances in Mathematics, 360 (2020), 106890, 29 pp.
doi: 10.1016/j.aim.2019.106890.
|
| [32] |
A. Sanchez, Gaps of saddle connection directions for some branched covers of tori, Ergodic Theory Dynam. Systems, 42 (2022), 3191-3245.
doi: 10.1017/etds.2021.81.
|
| [33] |
P. Sarnak, Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series, Comm. Pure Appl. Math., 34 (1981), 719-739.
doi: 10.1002/cpa.3160340602.
|
| [34] |
A. Strömbergsson, On the deviation of ergodic averages for horocycle flows, J. Mod. Dyn., 7 (2013), 291-328.
doi: 10.3934/jmd.2013.7.291.
|
| [35] |
A. Strömbergsson, An effective Ratner equidistribution result for ${\rm SL}(2, \mathbb{R})\ltimes\mathbb{R}^2$, Duke Math. J., 164 (2015), 843-902.
doi: 10.1215/00127094-2885873.
|
| [36] |
C. Uyanik and G. Work, The Distribution of Gaps for Saddle Connections on the Octagon, International Mathematics Research Notices, 2016 (2016), 5569-5602.
doi: 10.1093/imrn/rnv317.
|
| [37] |
Y. Vorobets, Periodic geodesics on generic translation surfaces, In Algebraic and Topological Dynamics, volume 385 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2005,205-258.
doi: 10.1090/conm/385/07199.
|
| [38] |
A. Wieser, On the "banana"-trick of Margulis, Available from https://metaphor.ethz.ch/x/2018/fs/401-3370-67L/sc/banana.pdf.
|
| [39] |
A. Wright, Translation surfaces and their orbit closures: An introduction for a broad audience, EMS Surv. Math. Sci., 2 (2015), 63-108.
doi: 10.4171/emss/9.
|
| [40] |
M. Xiong and A. Zaharescu, Correlation of fractions with divisibility constraints, Math. Nachr., 284 (2011), 393-407.
doi: 10.1002/mana.200710185.
|
| [41] |
A. Zorich, Flat surfaces, In Frontiers in Number Theory, Physics, and Geometry. I, Springer, Berlin, 2006,437-583.
|
The triangular transversal
A parametrization of
The saddle connections