\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The well-posedness and convergence of higher-order Hartree equations in critical Sobolev spaces on $ \mathbb{T}^3 $

  • *Corresponding author: Ryan L. Acosta Babb

    *Corresponding author: Ryan L. Acosta Babb 

The second author is supported by the ANR-DFG project (ANR-22-CE92-0013, DFG PE 3245/3-1 and BA 1477/15-1).

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this article, we consider Hartree equations generalised to $ 2p+1 $ order nonlinearities. These equations arise in the study of the mean-field limits of Bose gases with $ p $–body interactions. We study their well-posedness properties in $ H^{s_c}( \mathbb{T}^3) $, where $ \mathbb{T}^3 $ is the three dimensional torus and $ s_c = 3/2 - 1/p $ is the scaling-critical regularity. The convergence of solutions of the Hartree equation to solutions of the nonlinear Schrödinger equation is proved. We also consider the case of mixed nonlinearities, proving local well-posedness in $ s_c $ by considering the problem as a perturbation of the higher-order Hartree equation. In the particular case of the (defocusing) quintic-cubic Hartree equation, we also prove global well-posedness for all initial conditions in $ H^1( \mathbb{T}^3) $. This is done by viewing it as a perturbation of the local quintic NLS.

    Mathematics Subject Classification: Primary: 35Q55; Secondary: 35Q40, 37K06, 35R01.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. K. Arora, O. Riaño and S. Roudenko, Well-posedness in weighted spaces for the generalized Hartree equation with $p < 2$, Commun. Contemp. Math., 24 (2022), Paper No. 2150074, 51 pp. doi: 10.1142/S0219199721500747.
    [2] A. K. Arora and S. Roudenko, Well-posedness and blow-up properties for the generalized Hartree equation, J. Hyperbolic Differ. Equ., 17 (2020), 727-763.  doi: 10.1142/S0219891620500228.
    [3] N. Benedikter, M. Porta and B. Schlein, Effective Evolution Equations from Quantum Dynamics, vol. 7 of SpringerBriefs Math. Phys., Cham: Springer, 2016. doi: 10.1007/978-3-319-24898-1.
    [4] D. G. Bhimani and S. Haque, Strong ill-posedness for fractional Hartree and cubic NLS equations, J. Funct. Anal., 285 (2023), Paper No. 110157, 47 pp. doi: 10.1016/j.jfa.2023.110157.
    [5] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I: Schrödinger equations, Geom. Funct. Anal., 3 (1993), 107-156, URL https://eudml.org/doc/58115. doi: 10.1007/BF01896020.
    [6] J. Bourgain and C. Demeter, The proof of the $l^2$ decoupling conjecture, Ann. Math. (2), 182 (2015), 351-389.  doi: 10.4007/annals.2015.182.1.9.
    [7] T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in ${H}^ s$, Nonlinear Anal., Theory Methods Appl., 14 (1990), 807-836.  doi: 10.1016/0362-546X(90)90023-A.
    [8] T. Chen and A. Bowles Urban, On the well-posedness and stability of cubic and quintic nonlinear Schrödinger systems on $\mathbb{T}^3$, Ann. Henri Poincaré, 25 (2024), 1657-1692. doi: 10.1007/s00023-023-01371-5.
    [9] T. Chen and N. Pavlović, On the Cauchy problem for focusing and defocusing Gross-Pitaevskii hierarchies, Discrete Contin. Dyn. Syst., 27 (2010), 715-739.  doi: 10.3934/dcds.2010.27.715.
    [10] T. Chen and N. Pavlović, The quintic NLS as the mean field limit of a boson gas with three-body interactions, J. Funct. Anal., 260 (2011), 959-997.  doi: 10.1016/j.jfa.2010.11.003.
    [11] X. Chen and J. Holmer, The derivation of the $\mathbb{T}^{3}$ energy-critical NLS from quantum many-body dynamics, Invent. Math., 217 (2019), 433-547.  doi: 10.1007/s00222-019-00868-3.
    [12] J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical Schrödinger equation in {$\mathbb{R}^3$}, Ann. Math. (2), 167 (2008), 767-865.  doi: 10.4007/annals.2008.167.767.
    [13] J. FröhlichA. KnowlesB. Schlein and V. Sohinger, A microscopic derivation of time-dependent correlation functions of the $1D$ cubic nonlinear Schrödinger equation, Adv. Math., 353 (2019), 67-115.  doi: 10.1016/j.aim.2019.06.029.
    [14] J. Ginibre and G. Velo, On a class of non linear Schrödinger equations with non local interactions, Math. Z., 170 (1980), 109-136.  doi: 10.1007/BF01214768.
    [15] Z. GuoT. Oh and Y. Wang, Strichartz estimates for Schrödinger equations on irrational tori, Proc. Lond. Math. Soc. (3), 109 (2014), 975-1013.  doi: 10.1112/plms/pdu025.
    [16] C. M. Guzmán and C. Xu, The energy-critical inhomogeneous generalized Hartree equation in 3d, Preprint, arXiv: 2305.00972 [math.AP] (2023), 2023, URL https://arXiv.org/abs/2305.00972.
    [17] M. Hadac, S. Herr and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 26 (2009), 917-941. doi: 10.1016/j.anihpc.2008.04.002.
    [18] K. Hepp, The classical limit for quantum mechanical correlation functions, Communications in Mathematical Physics, 35 (1974), 265-277.  doi: 10.1007/BF01646348.
    [19] S. HerrD. Tataru and N. Tzvetkov, Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in $H^1(\mathbb{T})^3)$, Duke Math. J., 159 (2011), 329-349.  doi: 10.1215/00127094-1415889.
    [20] Y. HongK. Taliaferro and Z. Xie, Uniqueness of solutions to the 3d quintic Gross-Pitaevskii hierarchy, J. Funct. Anal., 270 (2016), 34-67.  doi: 10.1016/j.jfa.2015.10.003.
    [21] A. D. Ionescu and B. Pausader, The energy-critical defocusing NLS on $\mathbb{T}^3$, Duke Math. J., 161 (2012), 1581-1612.  doi: 10.1215/00127094-1593335.
    [22] A. D. Ionescu and B. Pausader, Global well-posedness of the energy-critical defocusing NLS on $\mathbb{R}\times\mathbb{T}^3$, Commun. Math. Phys., 312 (2012), 781-831.  doi: 10.1007/s00220-012-1474-3.
    [23] L. Junge and F. L. A. Visconti, Ground state energy of a dilute Bose gas with three-body hard-core interactions, Preprint, arXiv: 2406.09019 [math-ph] (2024), 2024, URL https://arXiv.org/abs/2406.09019.
    [24] T. Kato, On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Phys. Théor., 46 (1987), 113-129.
    [25] R. Killip and M. Vişan, Scale-invariant Strichartz estimates on tori and applications, Math. Res. Lett., 23 (2016), 445-472.  doi: 10.4310/MRL.2016.v23.n2.a8.
    [26] G. E. Lee, Local wellposedness for the critical nonlinear Schrödinger equation on $\mathbb{T}^3 $, Discrete Contin. Dyn. Syst., 39 (2019), 2763-2783.  doi: 10.3934/dcds.2019116.
    [27] J. Lee, Rate of convergence towards mean-field evolution for weakly interacting bosons with singular three-body interactions, Preprint, arXiv: 2006.13040 [math-ph] (2020), 2020, URL https://arXiv.org/abs/2006.13040.
    [28] Y. Luo, X. Yu, H. Yue and Z. Zhao, On well-posedness results for the cubic-quintic NLS on $\mathbb{T}^3$, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 257 (2025), Paper No. 113806, 9 pp. doi: 10.1016/j.na.2025.113806.
    [29] P. T. NamJ. Ricaud and A. Triay, The condensation of a trapped dilute Bose gas with three-body interactions, Probab. Math. Phys., 4 (2023), 91-149.  doi: 10.2140/pmp.2023.4.91.
    [30] P. T. Nam and R. Salzmann, Derivation of 3d energy-critical nonlinear Schrödinger equation and Bogoliubov excitations for Bose gases, Commun. Math. Phys., 375 (2020), 495-571.  doi: 10.1007/s00220-019-03480-x.
    [31] A. Rout and V. Sohinger, A microscopic derivation of Gibbs measures for the 1d focusing quintic nonlinear Schrödinger equation, SIAM Journal of Mathematical Analysis, to appear, URL https://arXiv.org/abs/2308.06569.
    [32] H. Spohn, Kinetic equations from hamiltonian dynamics: Markovian limits, Reviews of Modern Physics, 52 (1980), 569-615.  doi: 10.1103/RevModPhys.52.569.
    [33] T. TaoM. Visan and X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Commun. Partial Differ. Equations, 32 (2007), 1281-1343.  doi: 10.1080/03605300701588805.
    [34] Y. Wang, Periodic nonlinear Schrödinger equation in critical $H^{s}(\mathbb{T}^n)$ spaces, SIAM J. Math. Anal., 45 (2013), 1691-1703.  doi: 10.1137/120871833.
    [35] Z. Xie, Derivation of a nonlinear Schrödinger equation with a general power-type nonlinearity in $d=1, 2$., Differ. Integral Equ., 28 (2015), 455-504.  doi: 10.57262/die/1427744097.
    [36] X. Zhang, On the Cauchy problem of 3d energy-critical Schrödinger equations with subcritical perturbations, J. Differ. Equations, 230 (2006), 422-445.  doi: 10.1016/j.jde.2006.08.010.
  • 加载中
SHARE

Article Metrics

HTML views(440) PDF downloads(84) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return