February  2001, 1(1): 125-135. doi: 10.3934/dcdsb.2001.1.125

The numerical detection of connecting orbits

1. 

Department of Mathematics and Computer Science, University of Paderborn, D-33095 Paderborn, Germany, Germany, Germany

Published  January 2001

We present a new technique for the numerical detection and localization of connecting orbits between hyperbolic invariant sets in parameter dependent dynamical systems. This method is based on set-oriented multilevel methods for the computation of invariant manifolds and it can be applied to systems of moderate dimension. The main idea of the algorithm is to detect intersections of coverings of the stable and unstable manifolds of the invariant sets on different levels of the approximation. We demonstrate the applicability of the new method by three examples.
Citation: Michael Dellnitz, O. Junge, B Thiere. The numerical detection of connecting orbits. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 125-135. doi: 10.3934/dcdsb.2001.1.125
[1]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[2]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[3]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]