May  2001, 1(2): 219-232. doi: 10.3934/dcdsb.2001.1.219

Hysteresis in layered spring magnets

1. 

Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, United States

2. 

Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, United States, United States

Revised  January 2001 Published  February 2001

This article addresses a problem of micromagnetics: the reversal of magnetic moments in layered spring magnets. A one-dimensional model is used of a film consisting of several atomic layers of a soft material on top of several atomic layers of a hard material. Each atomic layer is taken to be uniformly magnetized, and spatial inhomogeneities within an atomic layer are neglected. The state of such a system is described by a chain of magnetic spin vectors. Each spin vector behaves like a spinning top driven locally by the effective magnetic field and subject to damping (Landau–Lifshitz–Gilbert equation). A numerical integration scheme for the LLG equation is presented that is unconditionally stable and preserves the magnitude of the magnetization vector at all times. The results of numerical investigations for a bilayer in a rotating in-plane magnetic field show hysteresis with a basic period of $2\pi$ at moderate fields and hysteresis with a basic period of $\pi$ at strong fields.
Citation: J. Samuel Jiang, Hans G. Kaper, Gary K Leaf. Hysteresis in layered spring magnets. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 219-232. doi: 10.3934/dcdsb.2001.1.219
[1]

Catherine Choquet, Mohammed Moumni, Mouhcine Tilioua. Homogenization of the Landau-Lifshitz-Gilbert equation in a contrasted composite medium. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 35-57. doi: 10.3934/dcdss.2018003

[2]

Gaël Bonithon. Landau-Lifschitz-Gilbert equation with applied eletric current. Conference Publications, 2007, 2007 (Special) : 138-144. doi: 10.3934/proc.2007.2007.138

[3]

Boling Guo, Fangfang Li. Global smooth solution for the Sipn-Polarized transport equation with Landau-Lifshitz-Bloch equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2825-2840. doi: 10.3934/dcdsb.2020034

[4]

Xueke Pu, Boling Guo, Jingjun Zhang. Global weak solutions to the 1-D fractional Landau-Lifshitz equation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 199-207. doi: 10.3934/dcdsb.2010.14.199

[5]

Tetsuya Ishiwata, Kota Kumazaki. Structure preserving finite difference scheme for the Landau-Lifshitz equation with applied magnetic field. Conference Publications, 2015, 2015 (special) : 644-651. doi: 10.3934/proc.2015.0644

[6]

Jing Li, Boling Guo, Lan Zeng, Yitong Pei. Global weak solution and smooth solution of the periodic initial value problem for the generalized Landau-Lifshitz-Bloch equation in high dimensions. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1345-1360. doi: 10.3934/dcdsb.2019230

[7]

Shijin Ding, Boling Guo, Junyu Lin, Ming Zeng. Global existence of weak solutions for Landau-Lifshitz-Maxwell equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 867-890. doi: 10.3934/dcds.2007.17.867

[8]

Wei Deng, Baisheng Yan. On Landau-Lifshitz equations of no-exchange energy models in ferromagnetics. Evolution Equations & Control Theory, 2013, 2 (4) : 599-620. doi: 10.3934/eect.2013.2.599

[9]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[10]

Guangwu Wang, Boling Guo. Global weak solution to the quantum Navier-Stokes-Landau-Lifshitz equations with density-dependent viscosity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6141-6166. doi: 10.3934/dcdsb.2019133

[11]

Ze Li, Lifeng Zhao. Convergence to harmonic maps for the Landau-Lifshitz flows between two dimensional hyperbolic spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 607-638. doi: 10.3934/dcds.2019025

[12]

Jian Zhai, Zhihui Cai. $\Gamma$-convergence with Dirichlet boundary condition and Landau-Lifshitz functional for thin film. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1071-1085. doi: 10.3934/dcdsb.2009.11.1071

[13]

Evelyne Miot, Mario Pulvirenti, Chiara Saffirio. On the Kac model for the Landau equation. Kinetic & Related Models, 2011, 4 (1) : 333-344. doi: 10.3934/krm.2011.4.333

[14]

D. Blömker, S. Maier-Paape, G. Schneider. The stochastic Landau equation as an amplitude equation. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 527-541. doi: 10.3934/dcdsb.2001.1.527

[15]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[16]

Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223

[17]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[18]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[19]

Kay Kirkpatrick. Rigorous derivation of the Landau equation in the weak coupling limit. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1895-1916. doi: 10.3934/cpaa.2009.8.1895

[20]

Yoshinori Morimoto, Karel Pravda-Starov, Chao-Jiang Xu. A remark on the ultra-analytic smoothing properties of the spatially homogeneous Landau equation. Kinetic & Related Models, 2013, 6 (4) : 715-727. doi: 10.3934/krm.2013.6.715

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]