
Previous Article
Sufficient conditions for stability of linear differential equations with distributed delay
 DCDSB Home
 This Issue

Next Article
Dynamical systems and operations research: A basic model
Hysteresis in layered spring magnets
1.  Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, United States 
2.  Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, United States, United States 
[1] 
Bo Chen, Youde Wang. Global weak solutions for LandauLifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319338. doi: 10.3934/cpaa.2020268 
[2] 
Marc HomsDones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems  A, 2021, 41 (2) : 899919. doi: 10.3934/dcds.2020303 
[3] 
Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 413438. doi: 10.3934/dcds.2020136 
[4] 
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020345 
[5] 
Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems  A, 2020 doi: 10.3934/dcds.2020384 
[6] 
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems  A, 2021, 41 (2) : 489505. doi: 10.3934/dcds.2020265 
[7] 
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020317 
[8] 
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 15031528. doi: 10.3934/era.2020079 
[9] 
Cheng He, Changzheng Qu. Global weak solutions for the twocomponent Novikov equation. Electronic Research Archive, 2020, 28 (4) : 15451562. doi: 10.3934/era.2020081 
[10] 
Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multidimensional space. Discrete & Continuous Dynamical Systems  A, 2021, 41 (1) : 395412. doi: 10.3934/dcds.2020364 
[11] 
Jiaquan Liu, Xiangqing Liu, ZhiQiang Wang. Signchanging solutions for a parameterdependent quasilinear equation. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020454 
[12] 
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Kleingordon equation. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020448 
[13] 
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems  S, 2020 doi: 10.3934/dcdss.2020432 
[14] 
Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159191. doi: 10.3934/cpaa.2020262 
[15] 
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with supcubic nonlinearity. Discrete & Continuous Dynamical Systems  A, 2021, 41 (2) : 569600. doi: 10.3934/dcds.2020270 
[16] 
Feifei Cheng, Ji Li. Geometric singular perturbation analysis of DegasperisProcesi equation with distributed delay. Discrete & Continuous Dynamical Systems  A, 2021, 41 (2) : 967985. doi: 10.3934/dcds.2020305 
[17] 
Tomáš Roubíček. CahnHilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems  S, 2021, 14 (1) : 4155. doi: 10.3934/dcdss.2020303 
[18] 
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reactiondiffusion equation. Discrete & Continuous Dynamical Systems  B, 2020 doi: 10.3934/dcdsb.2020319 
[19] 
XinGuang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D BrinkmanForchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 13951418. doi: 10.3934/era.2020074 
[20] 
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 54375473. doi: 10.3934/cpaa.2020247 
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]