August  2001, 1(3): 271-298. doi: 10.3934/dcdsb.2001.1.271

Variational proof for hard Discrete breathers in some classes of Hamiltonian dynamical systems

1. 

Laboratorie Léon Brillouin, CEA Saclay, 91191 Gif-sur-Yvette, France, France

2. 

DAMTP, Silver St, Cambridge CB3 9EW, United Kingdom

Received  December 2000 Revised  March 2001 Published  May 2001

We present a new method for proving the existence of Discrete Breathers in translationally invariant Hamiltonian systems describing massive particles interacting by a short range covex potential provided their frequency is above the linear phonon spectrum. The method holds for systems either with optical phonons (with a phonon gap) or with acoustic phonons (without phonon gap but with nonvanishing sound velocities), and does not use the concept of anticontinuous limit as most early methods. Discrete Breathers are obtained as loops in the phase space which maximize a certain average energy function for a fixed pseudoaction appropriately defined. It suffices to exhibit a trial loop with energy larger than the linear phonon energy at the same pseudoaction to prove the existence of a Discrete Breather with a frequency above the linear phonon spectrum. As a straightforward application of the method, Discrete Breathers are proven to exist at any energy (even small) in the quartic (or $\beta$) one-dimensional FPU model, which up to now was lacking a rigorous existence proof. The method can also work for piezoactive DBs in one or more dimensions and in many more complex models.
Citation: S. Aubry, G. Kopidakis, V. Kadelburg. Variational proof for hard Discrete breathers in some classes of Hamiltonian dynamical systems. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 271-298. doi: 10.3934/dcdsb.2001.1.271
[1]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[2]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[3]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[4]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[5]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[6]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (43)

Other articles
by authors

[Back to Top]