August  2001, 1(3): 387-399. doi: 10.3934/dcdsb.2001.1.387

The prime number periodical cicada problem

1. 

Department of Mathematics, Vanderbilt University, Nashville, TN 37340

Received  December 1999 Revised  April 2000 Published  May 2001

Mathematical models are presented to argue for the significance of prime number emergences of 13 year and 17 year periodical cicadas (Magicicada spp.). The prime number values arise as resonances of emergences with 2 and 3 year quasi-cycling predators. Predators with 2 and 3 year quasi-cycles are present due to their age dependent fecundity and mortality rates. Their quasi-cycles are enhanced by the predation of cicadas during emergences and thus exert significant influence on the cicada periodic life cycles.
Citation: G.F. Webb. The prime number periodical cicada problem. Discrete and Continuous Dynamical Systems - B, 2001, 1 (3) : 387-399. doi: 10.3934/dcdsb.2001.1.387
[1]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[2]

Yicang Zhou, Paolo Fergola. Dynamics of a discrete age-structured SIS models. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 841-850. doi: 10.3934/dcdsb.2004.4.841

[3]

Z.-R. He, M.-S. Wang, Z.-E. Ma. Optimal birth control problems for nonlinear age-structured population dynamics. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 589-594. doi: 10.3934/dcdsb.2004.4.589

[4]

Diène Ngom, A. Iggidir, Aboudramane Guiro, Abderrahim Ouahbi. An observer for a nonlinear age-structured model of a harvested fish population. Mathematical Biosciences & Engineering, 2008, 5 (2) : 337-354. doi: 10.3934/mbe.2008.5.337

[5]

Xianlong Fu, Zhihua Liu, Pierre Magal. Hopf bifurcation in an age-structured population model with two delays. Communications on Pure and Applied Analysis, 2015, 14 (2) : 657-676. doi: 10.3934/cpaa.2015.14.657

[6]

Hao Kang, Qimin Huang, Shigui Ruan. Periodic solutions of an age-structured epidemic model with periodic infection rate. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4955-4972. doi: 10.3934/cpaa.2020220

[7]

Yicang Zhou, Zhien Ma. Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences & Engineering, 2009, 6 (2) : 409-425. doi: 10.3934/mbe.2009.6.409

[8]

Odo Diekmann, Yi Wang, Ping Yan. Carrying simplices in discrete competitive systems and age-structured semelparous populations. Discrete and Continuous Dynamical Systems, 2008, 20 (1) : 37-52. doi: 10.3934/dcds.2008.20.37

[9]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6117-6130. doi: 10.3934/dcdsb.2021009

[10]

Shengqin Xu, Chuncheng Wang, Dejun Fan. Stability and bifurcation in an age-structured model with stocking rate and time delays. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2535-2549. doi: 10.3934/dcdsb.2018264

[11]

A. Ducrot. Travelling wave solutions for a scalar age-structured equation. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 251-273. doi: 10.3934/dcdsb.2007.7.251

[12]

Mostafa Adimy, Abdennasser Chekroun, Tarik-Mohamed Touaoula. Age-structured and delay differential-difference model of hematopoietic stem cell dynamics. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 2765-2791. doi: 10.3934/dcdsb.2015.20.2765

[13]

Peixuan Weng. Spreading speed and traveling wavefront of an age-structured population diffusing in a 2D lattice strip. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 883-904. doi: 10.3934/dcdsb.2009.12.883

[14]

Yingli Pan, Ying Su, Junjie Wei. Bistable waves of a recursive system arising from seasonal age-structured population models. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 511-528. doi: 10.3934/dcdsb.2018184

[15]

Sebastian Aniţa, Ana-Maria Moşsneagu. Optimal harvesting for age-structured population dynamics with size-dependent control. Mathematical Control and Related Fields, 2019, 9 (4) : 607-621. doi: 10.3934/mcrf.2019043

[16]

Guangrui Li, Ming Mei, Yau Shu Wong. Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Mathematical Biosciences & Engineering, 2008, 5 (1) : 85-100. doi: 10.3934/mbe.2008.5.85

[17]

Frédérique Billy, Jean Clairambault, Franck Delaunay, Céline Feillet, Natalia Robert. Age-structured cell population model to study the influence of growth factors on cell cycle dynamics. Mathematical Biosciences & Engineering, 2013, 10 (1) : 1-17. doi: 10.3934/mbe.2013.10.1

[18]

Tristan Roget. On the long-time behaviour of age and trait structured population dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2551-2576. doi: 10.3934/dcdsb.2018265

[19]

Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li. Global stability of an age-structured cholera model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 641-665. doi: 10.3934/mbe.2014.11.641

[20]

Ryszard Rudnicki, Radosław Wieczorek. On a nonlinear age-structured model of semelparous species. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2641-2656. doi: 10.3934/dcdsb.2014.19.2641

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (524)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]