
Previous Article
Simulation of stationary chemical patterns and waves in ionic reactions
 DCDSB Home
 This Issue
 Next Article
Convergence of a boundary integral method for 3D water waves
1.  Department of Applied and Computational Mathematics, California Institute of Technology, Pasadena, CA 91125, United States 
2.  School of Mathematical Sciences, Peking University, Beijing 100871, China 
[1] 
Angel Castro, Diego Córdoba, Charles Fefferman, Francisco Gancedo, Javier GómezSerrano. Structural stability for the splash singularities of the water waves problem. Discrete & Continuous Dynamical Systems  A, 2014, 34 (12) : 49975043. doi: 10.3934/dcds.2014.34.4997 
[2] 
André Nachbin, Roberto RibeiroJunior. A boundary integral formulation for particle trajectories in Stokes waves. Discrete & Continuous Dynamical Systems  A, 2014, 34 (8) : 31353153. doi: 10.3934/dcds.2014.34.3135 
[3] 
Dorina Mitrea and Marius Mitrea. Boundary integral methods for harmonic differential forms in Lipschitz domains. Electronic Research Announcements, 1996, 2: 9297. 
[4] 
Judith R. Miller, Huihui Zeng. Stability of traveling waves for systems of nonlinear integral recursions in spatial population biology. Discrete & Continuous Dynamical Systems  B, 2011, 16 (3) : 895925. doi: 10.3934/dcdsb.2011.16.895 
[5] 
Elena Kartashova. Nonlinear resonances of water waves. Discrete & Continuous Dynamical Systems  B, 2009, 12 (3) : 607621. doi: 10.3934/dcdsb.2009.12.607 
[6] 
Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete & Continuous Dynamical Systems  A, 2015, 35 (7) : 31033131. doi: 10.3934/dcds.2015.35.3103 
[7] 
Dajana Conte, Raffaele D'Ambrosio, Beatrice Paternoster. On the stability of $\vartheta$methods for stochastic Volterra integral equations. Discrete & Continuous Dynamical Systems  B, 2018, 23 (7) : 26952708. doi: 10.3934/dcdsb.2018087 
[8] 
Hung Le. Elliptic equations with transmission and Wentzell boundary conditions and an application to steady water waves in the presence of wind. Discrete & Continuous Dynamical Systems  A, 2018, 38 (7) : 33573385. doi: 10.3934/dcds.2018144 
[9] 
Walter A. Strauss. Vorticity jumps in steady water waves. Discrete & Continuous Dynamical Systems  B, 2012, 17 (4) : 11011112. doi: 10.3934/dcdsb.2012.17.1101 
[10] 
Jerry L. Bona, Henrik Kalisch. Models for internal waves in deep water. Discrete & Continuous Dynamical Systems  A, 2000, 6 (1) : 120. doi: 10.3934/dcds.2000.6.1 
[11] 
Vera Mikyoung Hur. On the formation of singularities for surface water waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 14651474. doi: 10.3934/cpaa.2012.11.1465 
[12] 
Martina ChirilusBruckner, Guido Schneider. Interaction of oscillatory packets of water waves. Conference Publications, 2015, 2015 (special) : 267275. doi: 10.3934/proc.2015.0267 
[13] 
Nadia Bedjaoui, Erik Weyer, Georges Bastin. Methods for the localization of a leak in open water channels. Networks & Heterogeneous Media, 2009, 4 (2) : 189210. doi: 10.3934/nhm.2009.4.189 
[14] 
Vincent Duchêne, Samer Israwi, Raafat Talhouk. Shallow water asymptotic models for the propagation of internal waves. Discrete & Continuous Dynamical Systems  S, 2014, 7 (2) : 239269. doi: 10.3934/dcdss.2014.7.239 
[15] 
AncaVoichita Matioc. On particle trajectories in linear deepwater waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 15371547. doi: 10.3934/cpaa.2012.11.1537 
[16] 
Jerry L. Bona, Thierry Colin, Colette Guillopé. Propagation of longcrested water waves. Discrete & Continuous Dynamical Systems  A, 2013, 33 (2) : 599628. doi: 10.3934/dcds.2013.33.599 
[17] 
Miles H. Wheeler. On stratified water waves with critical layers and Coriolis forces. Discrete & Continuous Dynamical Systems  A, 2019, 39 (8) : 47474770. doi: 10.3934/dcds.2019193 
[18] 
Jifeng Chu, Joachim Escher. Steady periodic equatorial water waves with vorticity. Discrete & Continuous Dynamical Systems  A, 2019, 39 (8) : 47134729. doi: 10.3934/dcds.2019191 
[19] 
Mats Ehrnström, Gabriele Villari. Recent progress on particle trajectories in steady water waves. Discrete & Continuous Dynamical Systems  B, 2009, 12 (3) : 539559. doi: 10.3934/dcdsb.2009.12.539 
[20] 
David M. Ambrose, Jerry L. Bona, David P. Nicholls. Wellposedness of a model for water waves with viscosity. Discrete & Continuous Dynamical Systems  B, 2012, 17 (4) : 11131137. doi: 10.3934/dcdsb.2012.17.1113 
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]