
Previous Article
Dynamics of the thermohaline circulation under wind forcing
 DCDSB Home
 This Issue

Next Article
Control of Kalmanlike filters using impulse and continuous feedback design
Analysis of upscaling absolute permeability
1.  Applied & Computational Mathematics, California Institute of Technology, Pasadena, CA 91125, United States 
2.  Department of Mathematics, Texas A&M University, College Station, TX 778433368, United States 
3.  Department of Applied and Computational Mathematics, California Institute of Technology, Pasadena, CA 91125, United States 
[1] 
Kundan Kumar, Tycho van Noorden, Iuliu Sorin Pop. Upscaling of reactive flows in domains with moving oscillating boundaries. Discrete & Continuous Dynamical Systems  S, 2014, 7 (1) : 95111. doi: 10.3934/dcdss.2014.7.95 
[2] 
Zhiming Chen, Weibing Deng, Huang Ye. A new upscaling method for the solute transport equations. Discrete & Continuous Dynamical Systems, 2005, 13 (4) : 941960. doi: 10.3934/dcds.2005.13.941 
[3] 
Keaton Hamm, Longxiu Huang. Stability of sampling for CUR decompositions. Foundations of Data Science, 2020, 2 (2) : 8399. doi: 10.3934/fods.2020006 
[4] 
Alexandre J. Chorin, Fei Lu, Robert N. Miller, Matthias Morzfeld, Xuemin Tu. Sampling, feasibility, and priors in data assimilation. Discrete & Continuous Dynamical Systems, 2016, 36 (8) : 42274246. doi: 10.3934/dcds.2016.36.4227 
[5] 
Shixu Meng. A sampling type method in an electromagnetic waveguide. Inverse Problems & Imaging, 2021, 15 (4) : 745762. doi: 10.3934/ipi.2021012 
[6] 
Peter Monk, Virginia Selgas. Sampling type methods for an inverse waveguide problem. Inverse Problems & Imaging, 2012, 6 (4) : 709747. doi: 10.3934/ipi.2012.6.709 
[7] 
Fang Zeng. Extended sampling method for interior inverse scattering problems. Inverse Problems & Imaging, 2020, 14 (4) : 719731. doi: 10.3934/ipi.2020033 
[8] 
T. Hillen, K. Painter, Christian Schmeiser. Global existence for chemotaxis with finite sampling radius. Discrete & Continuous Dynamical Systems  B, 2007, 7 (1) : 125144. doi: 10.3934/dcdsb.2007.7.125 
[9] 
Martin Hanke. Why linear sampling really seems to work. Inverse Problems & Imaging, 2008, 2 (3) : 373395. doi: 10.3934/ipi.2008.2.373 
[10] 
Aku Kammonen, Jonas Kiessling, Petr Plecháč, Mattias Sandberg, Anders Szepessy. Adaptive random Fourier features with Metropolis sampling. Foundations of Data Science, 2020, 2 (3) : 309332. doi: 10.3934/fods.2020014 
[11] 
Jijiang Sun, ChunLei Tang. Resonance problems for Kirchhoff type equations. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 21392154. doi: 10.3934/dcds.2013.33.2139 
[12] 
Sergiu Aizicovici, Nikolaos S. Papageorgiou, Vasile Staicu. Nonlinear Dirichlet problems with double resonance. Communications on Pure & Applied Analysis, 2017, 16 (4) : 11471168. doi: 10.3934/cpaa.2017056 
[13] 
Leszek Gasiński, Nikolaos S. Papageorgiou. Dirichlet $(p,q)$equations at resonance. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 20372060. doi: 10.3934/dcds.2014.34.2037 
[14] 
D. Bonheure, C. Fabry. A variational approach to resonance for asymmetric oscillators. Communications on Pure & Applied Analysis, 2007, 6 (1) : 163181. doi: 10.3934/cpaa.2007.6.163 
[15] 
Philip Korman. Curves of equiharmonic solutions, and problems at resonance. Discrete & Continuous Dynamical Systems, 2014, 34 (7) : 28472860. doi: 10.3934/dcds.2014.34.2847 
[16] 
Jiying Liu, Jubo Zhu, Fengxia Yan, Zenghui Zhang. Compressive sampling and $l_1$ minimization for SAR imaging with low sampling rate. Inverse Problems & Imaging, 2013, 7 (4) : 12951305. doi: 10.3934/ipi.2013.7.1295 
[17] 
Shixin Xu, Xingye Yue, Changrong Zhang. Homogenization: In mathematics or physics?. Discrete & Continuous Dynamical Systems  S, 2016, 9 (5) : 15751590. doi: 10.3934/dcdss.2016064 
[18] 
Fanghua Lin, Xiaodong Yan. A type of homogenization problem. Discrete & Continuous Dynamical Systems, 2003, 9 (1) : 130. doi: 10.3934/dcds.2003.9.1 
[19] 
Grégoire Allaire, Harsha Hutridurga. On the homogenization of multicomponent transport. Discrete & Continuous Dynamical Systems  B, 2015, 20 (8) : 25272551. doi: 10.3934/dcdsb.2015.20.2527 
[20] 
Dag Lukkassen, Annette Meidell, Peter Wall. Multiscale homogenization of monotone operators. Discrete & Continuous Dynamical Systems, 2008, 22 (3) : 711727. doi: 10.3934/dcds.2008.22.711 
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]