-
Previous Article
In-band disruption of a nonlinear circuit using optimal forcing functions
- DCDS-B Home
- This Issue
-
Next Article
Analysis of upscaling absolute permeability
Dynamics of the thermohaline circulation under wind forcing
1. | Department of Mathematics, Nanjing Normal University, Nanjing 210097, China |
2. | Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616 |
[1] |
Peng Gao, Yong Li. Averaging principle for the Schrödinger equations†. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2147-2168. doi: 10.3934/dcdsb.2017089 |
[2] |
Jinhuo Luo, Jin Wang, Hao Wang. Seasonal forcing and exponential threshold incidence in cholera dynamics. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2261-2290. doi: 10.3934/dcdsb.2017095 |
[3] |
Peng Sun. Exponential decay of Lebesgue numbers. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3773-3785. doi: 10.3934/dcds.2012.32.3773 |
[4] |
W. Wei, Yin Li, Zheng-An Yao. Decay of the compressible viscoelastic flows. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1603-1624. doi: 10.3934/cpaa.2016004 |
[5] |
Wenqing Hu, Chris Junchi Li. A convergence analysis of the perturbed compositional gradient flow: Averaging principle and normal deviations. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 4951-4977. doi: 10.3934/dcds.2018216 |
[6] |
Jie Xu, Yu Miao, Jicheng Liu. Strong averaging principle for slow-fast SPDEs with Poisson random measures. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2233-2256. doi: 10.3934/dcdsb.2015.20.2233 |
[7] |
Peng Gao. Averaging principle for stochastic Kuramoto-Sivashinsky equation with a fast oscillation. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5649-5684. doi: 10.3934/dcds.2018247 |
[8] |
Alexander Veretennikov. On large deviations in the averaging principle for SDE's with a "full dependence,'' revisited. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 523-549. doi: 10.3934/dcdsb.2013.18.523 |
[9] |
Yong Xu, Rong Guo, Di Liu, Huiqing Zhang, Jinqiao Duan. Stochastic averaging principle for dynamical systems with fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1197-1212. doi: 10.3934/dcdsb.2014.19.1197 |
[10] |
David Cheban, Zhenxin Liu. Averaging principle on infinite intervals for stochastic ordinary differential equations. Electronic Research Archive, 2021, 29 (4) : 2791-2817. doi: 10.3934/era.2021014 |
[11] |
Hideo Kubo. On the pointwise decay estimate for the wave equation with compactly supported forcing term. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1469-1480. doi: 10.3934/cpaa.2015.14.1469 |
[12] |
Xuhui Peng, Jianhua Huang, Yan Zheng. Exponential mixing for the fractional Magneto-Hydrodynamic equations with degenerate stochastic forcing. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4479-4506. doi: 10.3934/cpaa.2020204 |
[13] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[14] |
Yuri Kifer. Another proof of the averaging principle for fully coupled dynamical systems with hyperbolic fast motions. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1187-1201. doi: 10.3934/dcds.2005.13.1187 |
[15] |
Xiaobin Sun, Jianliang Zhai. Averaging principle for stochastic real Ginzburg-Landau equation driven by $ \alpha $-stable process. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1291-1319. doi: 10.3934/cpaa.2020063 |
[16] |
Eugenii Shustin. Exponential decay of oscillations in a multidimensional delay differential system. Conference Publications, 2003, 2003 (Special) : 809-816. doi: 10.3934/proc.2003.2003.809 |
[17] |
Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. A thermo piezoelectric model: Exponential decay of the total energy. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5273-5292. doi: 10.3934/dcds.2013.33.5273 |
[18] |
Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503 |
[19] |
Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559 |
[20] |
Sandra Carillo. Materials with memory: Free energies & solution exponential decay. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1235-1248. doi: 10.3934/cpaa.2010.9.1235 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]