May  2002, 2(2): 221-242. doi: 10.3934/dcdsb.2002.2.221

In-band disruption of a nonlinear circuit using optimal forcing functions

1. 

Department of Mathematics, University of Dundee, Dundee, DD1 4HN, United Kingdom, United Kingdom

2. 

Department of Electronic and Eletrical Engineering, University College London, London, WC1E 7JE, United Kingdom

3. 

Department of Electrical Engineering, University College London, London, WC1E 7JE, United Kingdom

Received  April 2001 Revised  October 2001 Published  February 2002

In this paper we illustrate a novel method for studying the role of complex dynamics in practical nonlinear systems of a certain form: Hamiltonian systems with a homoclinic connexion, subject to forcing and damping. We derive a set of optimal forcing functions which are better than any comparable waveform at inducing complex dynamics in the system in question via a break-up of the homoclinic orbit. These forcing functions are then used to investigate a practical problem relating to complex dynamics in a nonlinear system: how to achieve in-band disruption of a common nonlinear circuit, the phase-locked loop. This problem is chosen both for its intrinsic interest and as a motivational example of how such optimal forcing functions can be used to understand better complex dynamics in practical nonlinear systems. Numerical and experimental results are reported for a prototypical circuit which validate our approach. The importance and potential benefits of such an approach are discussed.
Citation: S.M. Booker, P.D. Smith, P. Brennan, R. Bullock. In-band disruption of a nonlinear circuit using optimal forcing functions. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 221-242. doi: 10.3934/dcdsb.2002.2.221
[1]

Safya Belghith. Symbolic dynamics in nondifferentiable system originating in R-L-Diode driven circuit. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 275-292. doi: 10.3934/dcds.2000.6.275

[2]

Jianghong Bao. Complex dynamics in the segmented disc dynamo. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3301-3314. doi: 10.3934/dcdsb.2016098

[3]

Xu Zhang, Guanrong Chen. Polynomial maps with hidden complex dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2941-2954. doi: 10.3934/dcdsb.2018293

[4]

Meihong Qiao, Anping Liu, Qing Tang. The dynamics of an HBV epidemic model on complex heterogeneous networks. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1393-1404. doi: 10.3934/dcdsb.2015.20.1393

[5]

Shmuel Friedland, Gunter Ochs. Hausdorff dimension, strong hyperbolicity and complex dynamics. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 405-430. doi: 10.3934/dcds.1998.4.405

[6]

Antonio Ambrosetti, Massimiliano Berti. Applications of critical point theory to homoclinics and complex dynamics. Conference Publications, 1998, 1998 (Special) : 72-78. doi: 10.3934/proc.1998.1998.72

[7]

Jianquan Li, Yicang Zhou, Jianhong Wu, Zhien Ma. Complex dynamics of a simple epidemic model with a nonlinear incidence. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 161-173. doi: 10.3934/dcdsb.2007.8.161

[8]

Antonio Ambrosetti, Massimiliano Berti. Homoclinics and complex dynamics in slowly oscillating systems. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 393-403. doi: 10.3934/dcds.1998.4.393

[9]

Oksana Koltsova, Lev Lerman. Hamiltonian dynamics near nontransverse homoclinic orbit to saddle-focus equilibrium. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 883-913. doi: 10.3934/dcds.2009.25.883

[10]

Benoît Grébert, Tiphaine Jézéquel, Laurent Thomann. Dynamics of Klein-Gordon on a compact surface near a homoclinic orbit. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3485-3510. doi: 10.3934/dcds.2014.34.3485

[11]

Brendan Weickert. Infinite-dimensional complex dynamics: A quantum random walk. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 517-524. doi: 10.3934/dcds.2001.7.517

[12]

John Erik Fornæss. Infinite dimensional complex dynamics: Quasiconjugacies, localization and quantum chaos. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 51-60. doi: 10.3934/dcds.2000.6.51

[13]

Giacomo Albi, Lorenzo Pareschi, Mattia Zanella. Opinion dynamics over complex networks: Kinetic modelling and numerical methods. Kinetic & Related Models, 2017, 10 (1) : 1-32. doi: 10.3934/krm.2017001

[14]

Filippo Terragni, José M. Vega. Simulation of complex dynamics using POD 'on the fly' and residual estimates. Conference Publications, 2015, 2015 (special) : 1060-1069. doi: 10.3934/proc.2015.1060

[15]

Matteo Focardi, Paolo Maria Mariano. Discrete dynamics of complex bodies with substructural dissipation: Variational integrators and convergence. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 109-130. doi: 10.3934/dcdsb.2009.11.109

[16]

Zhipeng Qiu, Huaiping Zhu. Complex dynamics of a nutrient-plankton system with nonlinear phytoplankton mortality and allelopathy. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2703-2728. doi: 10.3934/dcdsb.2016069

[17]

Eugen Mihailescu. Applications of thermodynamic formalism in complex dynamics on $\mathbb{P}^2$. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 821-836. doi: 10.3934/dcds.2001.7.821

[18]

Bo Zheng, Wenliang Guo, Linchao Hu, Mugen Huang, Jianshe Yu. Complex wolbachia infection dynamics in mosquitoes with imperfect maternal transmission. Mathematical Biosciences & Engineering, 2018, 15 (2) : 523-541. doi: 10.3934/mbe.2018024

[19]

Marco Sarich, Natasa Djurdjevac Conrad, Sharon Bruckner, Tim O. F. Conrad, Christof Schütte. Modularity revisited: A novel dynamics-based concept for decomposing complex networks. Journal of Computational Dynamics, 2014, 1 (1) : 191-212. doi: 10.3934/jcd.2014.1.191

[20]

Shouying Huang, Jifa Jiang. Epidemic dynamics on complex networks with general infection rate and immune strategies. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2071-2090. doi: 10.3934/dcdsb.2018226

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]